MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6n Structured version   Visualization version   GIF version

Theorem ac6n 9190
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 9189. (Contributed by NM, 10-Jun-2007.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6n (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6n
StepHypRef Expression
1 ac6s.1 . . . 4 𝐴 ∈ V
2 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
32notbid 307 . . . 4 (𝑦 = (𝑓𝑥) → (¬ 𝜑 ↔ ¬ 𝜓))
41, 3ac6s 9189 . . 3 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
54con3i 149 . 2 (¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓) → ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
6 dfrex2 2979 . . . . 5 (∃𝑥𝐴 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓)
76imbi2i 325 . . . 4 ((𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ (𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
87albii 1737 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
9 alinexa 1759 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
108, 9bitri 263 . 2 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
11 dfral2 2977 . . . 4 (∀𝑦𝐵 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜑)
1211rexbii 3023 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑)
13 rexnal 2978 . . 3 (∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
1412, 13bitri 263 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
155, 10, 143imtr4i 280 1 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wf 5800  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-en 7842  df-r1 8510  df-rank 8511  df-card 8648  df-ac 8822
This theorem is referenced by:  nmobndseqiALT  27019
  Copyright terms: Public domain W3C validator