Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alinexa | Structured version Visualization version GIF version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
alinexa | ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnang 1758 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑 ∧ 𝜓)) | |
2 | alnex 1697 | . 2 ⊢ (∀𝑥 ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) | |
3 | 1, 2 | bitri 263 | 1 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 |
This theorem is referenced by: equs3 1862 ralnexOLD 2976 r2exlem 3041 zfregs2 8492 ac6n 9190 nnunb 11165 alexsubALTlem3 21663 nmobndseqi 27018 bj-exnalimn 31797 bj-ssbn 31830 frege124d 37072 zfregs2VD 38098 |
Copyright terms: Public domain | W3C validator |