Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralnexOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of ralnex 2975 as of 16-Jul-2021. (Contributed by NM, 21-Jan-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralnexOLD | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2901 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
2 | alinexa 1759 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 2902 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | 2, 3 | xchbinxr 324 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | bitri 263 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 ∃wex 1695 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-ral 2901 df-rex 2902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |