Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nbupgrres Structured version   Visualization version   GIF version

Theorem nbupgrres 40592
Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because 𝑁, 𝐾 and 𝑀 could be connected by one edge, so 𝑀 is a neighbor of 𝐾 in the original graph, but not in the restricted graph, because the edge between 𝑀 and 𝐾, also incident with 𝑁, was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgrres.v 𝑉 = (Vtx‘𝐺)
nbupgrres.e 𝐸 = (Edg‘𝐺)
nbupgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
nbupgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
nbupgrres (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐾   𝑒,𝑁   𝑒,𝑀   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem nbupgrres
StepHypRef Expression
1 simp1l 1078 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐺 ∈ UPGraph )
2 eldifi 3694 . . . . . . 7 (𝐾 ∈ (𝑉 ∖ {𝑁}) → 𝐾𝑉)
323ad2ant2 1076 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐾𝑉)
4 eldifsn 4260 . . . . . . . . 9 (𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}) ↔ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
5 eldifi 3694 . . . . . . . . . 10 (𝑀 ∈ (𝑉 ∖ {𝑁}) → 𝑀𝑉)
65anim1i 590 . . . . . . . . 9 ((𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾) → (𝑀𝑉𝑀𝐾))
74, 6sylbi 206 . . . . . . . 8 (𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}) → (𝑀𝑉𝑀𝐾))
8 difpr 4275 . . . . . . . 8 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
97, 8eleq2s 2706 . . . . . . 7 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → (𝑀𝑉𝑀𝐾))
1093ad2ant3 1077 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀𝑉𝑀𝐾))
11 nbupgrres.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
12 nbupgrres.e . . . . . . 7 𝐸 = (Edg‘𝐺)
1311, 12nbupgrel 40567 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐾𝑉) ∧ (𝑀𝑉𝑀𝐾)) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐸))
141, 3, 10, 13syl21anc 1317 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐸))
1514biimpa 500 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑀, 𝐾} ∈ 𝐸)
168eleq2i 2680 . . . . . . . . . 10 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ 𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}))
17 eldifsn 4260 . . . . . . . . . . 11 (𝑀 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑀𝑉𝑀𝑁))
1817anbi1i 727 . . . . . . . . . 10 ((𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾) ↔ ((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾))
1916, 4, 183bitri 285 . . . . . . . . 9 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ ((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾))
20 simpr 476 . . . . . . . . . . 11 ((𝑀𝑉𝑀𝑁) → 𝑀𝑁)
2120necomd 2837 . . . . . . . . . 10 ((𝑀𝑉𝑀𝑁) → 𝑁𝑀)
2221adantr 480 . . . . . . . . 9 (((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾) → 𝑁𝑀)
2319, 22sylbi 206 . . . . . . . 8 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑁𝑀)
24233ad2ant3 1077 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁𝑀)
25 eldifsn 4260 . . . . . . . . 9 (𝐾 ∈ (𝑉 ∖ {𝑁}) ↔ (𝐾𝑉𝐾𝑁))
26 simpr 476 . . . . . . . . . 10 ((𝐾𝑉𝐾𝑁) → 𝐾𝑁)
2726necomd 2837 . . . . . . . . 9 ((𝐾𝑉𝐾𝑁) → 𝑁𝐾)
2825, 27sylbi 206 . . . . . . . 8 (𝐾 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝐾)
29283ad2ant2 1076 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁𝐾)
3024, 29nelprd 4151 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ¬ 𝑁 ∈ {𝑀, 𝐾})
31 df-nel 2783 . . . . . 6 (𝑁 ∉ {𝑀, 𝐾} ↔ ¬ 𝑁 ∈ {𝑀, 𝐾})
3230, 31sylibr 223 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁 ∉ {𝑀, 𝐾})
3332adantr 480 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → 𝑁 ∉ {𝑀, 𝐾})
34 neleq2 2889 . . . . 5 (𝑒 = {𝑀, 𝐾} → (𝑁𝑒𝑁 ∉ {𝑀, 𝐾}))
35 nbupgrres.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
3634, 35elrab2 3333 . . . 4 ({𝑀, 𝐾} ∈ 𝐹 ↔ ({𝑀, 𝐾} ∈ 𝐸𝑁 ∉ {𝑀, 𝐾}))
3715, 33, 36sylanbrc 695 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑀, 𝐾} ∈ 𝐹)
38 nbupgrres.s . . . . . . . 8 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
3911, 12, 35, 38upgrres1 40532 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph )
40393ad2ant1 1075 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑆 ∈ UPGraph )
41 simp2 1055 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐾 ∈ (𝑉 ∖ {𝑁}))
4216, 4sylbb 208 . . . . . . 7 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
43423ad2ant3 1077 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
4440, 41, 43jca31 555 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)))
4544adantr 480 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → ((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)))
4611, 12, 35, 38upgrres1lem2 40530 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
4746eqcomi 2619 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
48 opex 4859 . . . . . . . 8 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
4938, 48eqeltri 2684 . . . . . . 7 𝑆 ∈ V
50 edgaval 25794 . . . . . . 7 (𝑆 ∈ V → (Edg‘𝑆) = ran (iEdg‘𝑆))
5149, 50ax-mp 5 . . . . . 6 (Edg‘𝑆) = ran (iEdg‘𝑆)
5211, 12, 35, 38upgrres1lem3 40531 . . . . . . 7 (iEdg‘𝑆) = ( I ↾ 𝐹)
5352rneqi 5273 . . . . . 6 ran (iEdg‘𝑆) = ran ( I ↾ 𝐹)
54 rnresi 5398 . . . . . 6 ran ( I ↾ 𝐹) = 𝐹
5551, 53, 543eqtrri 2637 . . . . 5 𝐹 = (Edg‘𝑆)
5647, 55nbupgrel 40567 . . . 4 (((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)) → (𝑀 ∈ (𝑆 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐹))
5745, 56syl 17 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → (𝑀 ∈ (𝑆 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐹))
5837, 57mpbird 246 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾))
5958ex 449 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wnel 2781  {crab 2900  Vcvv 3173  cdif 3537  {csn 4125  {cpr 4127  cop 4131   I cid 4948  ran crn 5039  cres 5040  cfv 5804  (class class class)co 6549  Vtxcvtx 25673  iEdgciedg 25674   UPGraph cupgr 25747  Edgcedga 25792   NeighbVtx cnbgr 40550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-vtx 25675  df-iedg 25676  df-upgr 25749  df-edga 25793  df-nbgr 40554
This theorem is referenced by:  nbupgruvtxres  40634
  Copyright terms: Public domain W3C validator