Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nbupgruvtxres Structured version   Visualization version   GIF version

Theorem nbupgruvtxres 40634
Description: The neighborhood of a universal vertex in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgruvtxres.v 𝑉 = (Vtx‘𝐺)
nbupgruvtxres.e 𝐸 = (Edg‘𝐺)
nbupgruvtxres.f 𝐹 = {𝑒𝐸𝑁𝑒}
nbupgruvtxres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
nbupgruvtxres (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐾   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem nbupgruvtxres
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbupgruvtxres.s . . . . . . 7 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
2 opex 4859 . . . . . . 7 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
31, 2eqeltri 2684 . . . . . 6 𝑆 ∈ V
4 eqid 2610 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘𝑆)
54nbgrssovtx 40586 . . . . . 6 (𝑆 ∈ V → (𝑆 NeighbVtx 𝐾) ⊆ ((Vtx‘𝑆) ∖ {𝐾}))
63, 5mp1i 13 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑆 NeighbVtx 𝐾) ⊆ ((Vtx‘𝑆) ∖ {𝐾}))
7 difpr 4275 . . . . . 6 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
8 nbupgruvtxres.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
9 nbupgruvtxres.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
10 nbupgruvtxres.f . . . . . . . . . 10 𝐹 = {𝑒𝐸𝑁𝑒}
118, 9, 10, 1upgrres1lem2 40530 . . . . . . . . 9 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
1211eqcomi 2619 . . . . . . . 8 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
1312a1i 11 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁}) = (Vtx‘𝑆))
1413difeq1d 3689 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝑉 ∖ {𝑁}) ∖ {𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
157, 14syl5eq 2656 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
166, 15sseqtr4d 3605 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑆 NeighbVtx 𝐾) ⊆ (𝑉 ∖ {𝑁, 𝐾}))
1716adantr 480 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) ⊆ (𝑉 ∖ {𝑁, 𝐾}))
18 simpl 472 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})))
1918anim1i 590 . . . . . . 7 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})))
20 df-3an 1033 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) ↔ (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})))
2119, 20sylibr 223 . . . . . 6 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})))
22 dif32 3850 . . . . . . . . . . . . 13 ((𝑉 ∖ {𝑁}) ∖ {𝐾}) = ((𝑉 ∖ {𝐾}) ∖ {𝑁})
237, 22eqtri 2632 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝐾}) ∖ {𝑁})
2423eleq2i 2680 . . . . . . . . . . 11 (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ 𝑛 ∈ ((𝑉 ∖ {𝐾}) ∖ {𝑁}))
25 eldifsn 4260 . . . . . . . . . . 11 (𝑛 ∈ ((𝑉 ∖ {𝐾}) ∖ {𝑁}) ↔ (𝑛 ∈ (𝑉 ∖ {𝐾}) ∧ 𝑛𝑁))
2624, 25bitri 263 . . . . . . . . . 10 (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ (𝑛 ∈ (𝑉 ∖ {𝐾}) ∧ 𝑛𝑁))
2726simplbi 475 . . . . . . . . 9 (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝑉 ∖ {𝐾}))
28 eleq2 2677 . . . . . . . . 9 ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑛 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝑛 ∈ (𝑉 ∖ {𝐾})))
2927, 28syl5ibr 235 . . . . . . . 8 ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾)))
3029adantl 481 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾)))
3130imp 444 . . . . . 6 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾))
328, 9, 10, 1nbupgrres 40592 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑛 ∈ (𝐺 NeighbVtx 𝐾) → 𝑛 ∈ (𝑆 NeighbVtx 𝐾)))
3321, 31, 32sylc 63 . . . . 5 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑛 ∈ (𝑆 NeighbVtx 𝐾))
3433ralrimiva 2949 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → ∀𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})𝑛 ∈ (𝑆 NeighbVtx 𝐾))
35 dfss3 3558 . . . 4 ((𝑉 ∖ {𝑁, 𝐾}) ⊆ (𝑆 NeighbVtx 𝐾) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})𝑛 ∈ (𝑆 NeighbVtx 𝐾))
3634, 35sylibr 223 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑉 ∖ {𝑁, 𝐾}) ⊆ (𝑆 NeighbVtx 𝐾))
3717, 36eqssd 3585 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))
3837ex 449 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  {csn 4125  {cpr 4127  cop 4131   I cid 4948  cres 5040  cfv 5804  (class class class)co 6549  Vtxcvtx 25673   UPGraph cupgr 25747  Edgcedga 25792   NeighbVtx cnbgr 40550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-vtx 25675  df-iedg 25676  df-upgr 25749  df-edga 25793  df-nbgr 40554
This theorem is referenced by:  uvtxupgrres  40635
  Copyright terms: Public domain W3C validator