Proof of Theorem nbgraf1olem3
Step | Hyp | Ref
| Expression |
1 | | nbgraf1o.n |
. . . . 5
⊢ 𝑁 = (〈𝑉, 𝐸〉 Neighbors 𝑈) |
2 | 1 | eleq2i 2680 |
. . . 4
⊢ (𝑀 ∈ 𝑁 ↔ 𝑀 ∈ (〈𝑉, 𝐸〉 Neighbors 𝑈)) |
3 | | nbgracnvfv 25969 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑀 ∈ (〈𝑉, 𝐸〉 Neighbors 𝑈)) → (𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀}) |
4 | 2, 3 | sylan2b 491 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑀 ∈ 𝑁) → (𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀}) |
5 | 4 | 3adant2 1073 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀}) |
6 | | usgraf1o 25887 |
. . . . . . 7
⊢ (𝑉 USGrph 𝐸 → 𝐸:dom 𝐸–1-1-onto→ran
𝐸) |
7 | 6 | 3ad2ant1 1075 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → 𝐸:dom 𝐸–1-1-onto→ran
𝐸) |
8 | | nbgraeledg 25959 |
. . . . . . . . . . . 12
⊢ (𝑉 USGrph 𝐸 → (𝑀 ∈ (〈𝑉, 𝐸〉 Neighbors 𝑈) ↔ {𝑀, 𝑈} ∈ ran 𝐸)) |
9 | | prcom 4211 |
. . . . . . . . . . . . 13
⊢ {𝑀, 𝑈} = {𝑈, 𝑀} |
10 | 9 | eleq1i 2679 |
. . . . . . . . . . . 12
⊢ ({𝑀, 𝑈} ∈ ran 𝐸 ↔ {𝑈, 𝑀} ∈ ran 𝐸) |
11 | 8, 10 | syl6bb 275 |
. . . . . . . . . . 11
⊢ (𝑉 USGrph 𝐸 → (𝑀 ∈ (〈𝑉, 𝐸〉 Neighbors 𝑈) ↔ {𝑈, 𝑀} ∈ ran 𝐸)) |
12 | 11 | biimpcd 238 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (〈𝑉, 𝐸〉 Neighbors 𝑈) → (𝑉 USGrph 𝐸 → {𝑈, 𝑀} ∈ ran 𝐸)) |
13 | 12 | a1d 25 |
. . . . . . . . 9
⊢ (𝑀 ∈ (〈𝑉, 𝐸〉 Neighbors 𝑈) → (𝑈 ∈ 𝑉 → (𝑉 USGrph 𝐸 → {𝑈, 𝑀} ∈ ran 𝐸))) |
14 | 13, 1 | eleq2s 2706 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑁 → (𝑈 ∈ 𝑉 → (𝑉 USGrph 𝐸 → {𝑈, 𝑀} ∈ ran 𝐸))) |
15 | 14 | com13 86 |
. . . . . . 7
⊢ (𝑉 USGrph 𝐸 → (𝑈 ∈ 𝑉 → (𝑀 ∈ 𝑁 → {𝑈, 𝑀} ∈ ran 𝐸))) |
16 | 15 | 3imp 1249 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → {𝑈, 𝑀} ∈ ran 𝐸) |
17 | | f1ocnvdm 6440 |
. . . . . 6
⊢ ((𝐸:dom 𝐸–1-1-onto→ran
𝐸 ∧ {𝑈, 𝑀} ∈ ran 𝐸) → (◡𝐸‘{𝑈, 𝑀}) ∈ dom 𝐸) |
18 | 7, 16, 17 | syl2anc 691 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (◡𝐸‘{𝑈, 𝑀}) ∈ dom 𝐸) |
19 | | prid1g 4239 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑀}) |
20 | | eleq2 2677 |
. . . . . . . 8
⊢ ((𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀} → (𝑈 ∈ (𝐸‘(◡𝐸‘{𝑈, 𝑀})) ↔ 𝑈 ∈ {𝑈, 𝑀})) |
21 | 19, 20 | syl5ibrcom 236 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑉 → ((𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀} → 𝑈 ∈ (𝐸‘(◡𝐸‘{𝑈, 𝑀})))) |
22 | 21 | 3ad2ant2 1076 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → ((𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀} → 𝑈 ∈ (𝐸‘(◡𝐸‘{𝑈, 𝑀})))) |
23 | 5, 22 | mpd 15 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ (𝐸‘(◡𝐸‘{𝑈, 𝑀}))) |
24 | | fveq2 6103 |
. . . . . . 7
⊢ (𝑖 = (◡𝐸‘{𝑈, 𝑀}) → (𝐸‘𝑖) = (𝐸‘(◡𝐸‘{𝑈, 𝑀}))) |
25 | 24 | eleq2d 2673 |
. . . . . 6
⊢ (𝑖 = (◡𝐸‘{𝑈, 𝑀}) → (𝑈 ∈ (𝐸‘𝑖) ↔ 𝑈 ∈ (𝐸‘(◡𝐸‘{𝑈, 𝑀})))) |
26 | 25 | elrab 3331 |
. . . . 5
⊢ ((◡𝐸‘{𝑈, 𝑀}) ∈ {𝑖 ∈ dom 𝐸 ∣ 𝑈 ∈ (𝐸‘𝑖)} ↔ ((◡𝐸‘{𝑈, 𝑀}) ∈ dom 𝐸 ∧ 𝑈 ∈ (𝐸‘(◡𝐸‘{𝑈, 𝑀})))) |
27 | 18, 23, 26 | sylanbrc 695 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (◡𝐸‘{𝑈, 𝑀}) ∈ {𝑖 ∈ dom 𝐸 ∣ 𝑈 ∈ (𝐸‘𝑖)}) |
28 | | nbgraf1o.i |
. . . 4
⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑈 ∈ (𝐸‘𝑖)} |
29 | 27, 28 | syl6eleqr 2699 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (◡𝐸‘{𝑈, 𝑀}) ∈ 𝐼) |
30 | | nbgraf1o.f |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})) |
31 | 1, 28, 30 | nbgraf1olem1 25970 |
. . . 4
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑀}) |
32 | 31 | 3impa 1251 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑀}) |
33 | 24 | eqeq1d 2612 |
. . . 4
⊢ (𝑖 = (◡𝐸‘{𝑈, 𝑀}) → ((𝐸‘𝑖) = {𝑈, 𝑀} ↔ (𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀})) |
34 | 33 | riota2 6533 |
. . 3
⊢ (((◡𝐸‘{𝑈, 𝑀}) ∈ 𝐼 ∧ ∃!𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑀}) → ((𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀} ↔ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑀}) = (◡𝐸‘{𝑈, 𝑀}))) |
35 | 29, 32, 34 | syl2anc 691 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → ((𝐸‘(◡𝐸‘{𝑈, 𝑀})) = {𝑈, 𝑀} ↔ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑀}) = (◡𝐸‘{𝑈, 𝑀}))) |
36 | 5, 35 | mpbid 221 |
1
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑀}) = (◡𝐸‘{𝑈, 𝑀})) |