Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nbgr1vtx Structured version   Visualization version   GIF version

Theorem nbgr1vtx 40580
 Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.)
Assertion
Ref Expression
nbgr1vtx ((#‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)

Proof of Theorem nbgr1vtx
Dummy variables 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6113 . . . . . . 7 (Vtx‘𝐺) ∈ V
2 hash1snb 13068 . . . . . . 7 ((Vtx‘𝐺) ∈ V → ((#‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣}))
31, 2ax-mp 5 . . . . . 6 ((#‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣})
4 ral0 4028 . . . . . . . . 9 𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒
5 eleq2 2677 . . . . . . . . . . . 12 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ {𝑣}))
6 elsni 4142 . . . . . . . . . . . . . 14 (𝐾 ∈ {𝑣} → 𝐾 = 𝑣)
7 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → (Vtx‘𝐺) = {𝑣})
8 sneq 4135 . . . . . . . . . . . . . . . . . 18 (𝐾 = 𝑣 → {𝐾} = {𝑣})
98adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → {𝐾} = {𝑣})
107, 9difeq12d 3691 . . . . . . . . . . . . . . . 16 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ({𝑣} ∖ {𝑣}))
11 difid 3902 . . . . . . . . . . . . . . . 16 ({𝑣} ∖ {𝑣}) = ∅
1210, 11syl6eq 2660 . . . . . . . . . . . . . . 15 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)
1312ex 449 . . . . . . . . . . . . . 14 (𝐾 = 𝑣 → ((Vtx‘𝐺) = {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅))
146, 13syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ {𝑣} → ((Vtx‘𝐺) = {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅))
1514com12 32 . . . . . . . . . . . 12 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅))
165, 15sylbid 229 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅))
1716imp 444 . . . . . . . . . 10 (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)
1817raleqdv 3121 . . . . . . . . 9 (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
194, 18mpbiri 247 . . . . . . . 8 (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
2019ex 449 . . . . . . 7 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
2120exlimiv 1845 . . . . . 6 (∃𝑣(Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
223, 21sylbi 206 . . . . 5 ((#‘(Vtx‘𝐺)) = 1 → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
2322impcom 445 . . . 4 ((𝐾 ∈ (Vtx‘𝐺) ∧ (#‘(Vtx‘𝐺)) = 1) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
2423nbgr0vtxlem 40577 . . 3 ((𝐾 ∈ (Vtx‘𝐺) ∧ (#‘(Vtx‘𝐺)) = 1) → (𝐺 NeighbVtx 𝐾) = ∅)
2524ex 449 . 2 (𝐾 ∈ (Vtx‘𝐺) → ((#‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅))
26 df-nel 2783 . . . 4 (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺))
27 eqid 2610 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2827nbgrnvtx0 40563 . . . 4 (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
2926, 28sylbir 224 . . 3 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
3029a1d 25 . 2 𝐾 ∈ (Vtx‘𝐺) → ((#‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅))
3125, 30pm2.61i 175 1 ((#‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ∉ wnel 2781  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  {csn 4125  {cpr 4127  ‘cfv 5804  (class class class)co 6549  1c1 9816  #chash 12979  Vtxcvtx 25673  Edgcedga 25792   NeighbVtx cnbgr 40550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-nbgr 40554 This theorem is referenced by:  rusgr1vtx  40788
 Copyright terms: Public domain W3C validator