Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff1o Structured version   Visualization version   GIF version

Theorem mrsubff1o 30666
 Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff1o (𝑇𝑊 → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran 𝑆)

Proof of Theorem mrsubff1o
StepHypRef Expression
1 mrsubvr.v . . . 4 𝑉 = (mVR‘𝑇)
2 mrsubvr.r . . . 4 𝑅 = (mREx‘𝑇)
3 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
41, 2, 3mrsubff1 30665 . . 3 (𝑇𝑊 → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅))
5 f1f1orn 6061 . . 3 ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅) → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅𝑚 𝑉)))
64, 5syl 17 . 2 (𝑇𝑊 → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅𝑚 𝑉)))
71, 2, 3mrsubrn 30664 . . . 4 ran 𝑆 = (𝑆 “ (𝑅𝑚 𝑉))
8 df-ima 5051 . . . 4 (𝑆 “ (𝑅𝑚 𝑉)) = ran (𝑆 ↾ (𝑅𝑚 𝑉))
97, 8eqtri 2632 . . 3 ran 𝑆 = ran (𝑆 ↾ (𝑅𝑚 𝑉))
10 f1oeq3 6042 . . 3 (ran 𝑆 = ran (𝑆 ↾ (𝑅𝑚 𝑉)) → ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅𝑚 𝑉))))
119, 10ax-mp 5 . 2 ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran 𝑆 ↔ (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran (𝑆 ↾ (𝑅𝑚 𝑉)))
126, 11sylibr 223 1 (𝑇𝑊 → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1-onto→ran 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ran crn 5039   ↾ cres 5040   “ cima 5041  –1-1→wf1 5801  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  mVRcmvar 30612  mRExcmrex 30617  mRSubstcmrsub 30621 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-frmd 17209  df-mrex 30637  df-mrsub 30641 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator