Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndvrid | Structured version Visualization version GIF version |
Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mndvcl.p | ⊢ + = (+g‘𝑀) |
mndvlid.z | ⊢ 0 = (0g‘𝑀) |
Ref | Expression |
---|---|
mndvrid | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + (𝐼 × { 0 })) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 7764 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
2 | 1 | simprd 478 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) → 𝐼 ∈ V) |
3 | 2 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → 𝐼 ∈ V) |
4 | elmapi 7765 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) → 𝑋:𝐼⟶𝐵) | |
5 | 4 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → 𝑋:𝐼⟶𝐵) |
6 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | mndvlid.z | . . . 4 ⊢ 0 = (0g‘𝑀) | |
8 | 6, 7 | mndidcl 17131 | . . 3 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
9 | 8 | adantr 480 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → 0 ∈ 𝐵) |
10 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
11 | 6, 10, 7 | mndrid 17135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
12 | 11 | adantlr 747 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
13 | 3, 5, 9, 12 | caofid0r 6824 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + (𝐼 × { 0 })) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {csn 4125 × cxp 5036 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ∘𝑓 cof 6793 ↑𝑚 cmap 7744 Basecbs 15695 +gcplusg 15768 0gc0g 15923 Mndcmnd 17117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-1st 7059 df-2nd 7060 df-map 7746 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |