MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndrid Structured version   Visualization version   GIF version

Theorem mndrid 17135
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndrid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)

Proof of Theorem mndrid
StepHypRef Expression
1 mndlrid.b . . 3 𝐵 = (Base‘𝐺)
2 mndlrid.p . . 3 + = (+g𝐺)
3 mndlrid.o . . 3 0 = (0g𝐺)
41, 2, 3mndlrid 17133 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
54simprd 478 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118
This theorem is referenced by:  mndpfo  17137  issubmnd  17141  ress0g  17142  submnd0  17143  prdsidlem  17145  imasmnd  17151  mrcmndind  17189  gsumccat  17201  grprid  17276  mhmid  17359  mhmmnd  17360  mulgnn0dir  17394  cntzsubm  17591  oppgmnd  17607  lsmub1x  17884  gsumval3  18131  gsumzsplit  18150  srgbinomlem3  18365  mndvrid  20019  mndifsplit  20261  gsummatr01  20284  smadiadet  20295  pmatcollpw3fi1lem1  20410  chfacfscmulgsum  20484  chfacfpmmulgsum  20488  tsmssplit  21765  tsmsxp  21768  slmd0vrid  29107  gsummptres  29115
  Copyright terms: Public domain W3C validator