MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatval Structured version   Visualization version   GIF version

Theorem mat2pmatval 20348
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mat2pmatval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 mat2pmatfval.s . . . 4 𝑆 = (algSc‘𝑃)
61, 2, 3, 4, 5mat2pmatfval 20347 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
763adant3 1074 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
8 oveq 6555 . . . . 5 (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦))
98fveq2d 6107 . . . 4 (𝑚 = 𝑀 → (𝑆‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑀𝑦)))
109mpt2eq3dv 6619 . . 3 (𝑚 = 𝑀 → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
1110adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
12 simp3 1056 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
13 simp1 1054 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑁 ∈ Fin)
14 mpt2exga 7135 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V)
1513, 13, 14syl2anc 691 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V)
167, 11, 12, 15fvmptd 6197 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  Basecbs 15695  algSccascl 19132  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-mat2pmat 20331
This theorem is referenced by:  mat2pmatvalel  20349  mat2pmatbas  20350  mat2pmatghm  20354  mat2pmatmul  20355  d0mat2pmat  20362  d1mat2pmat  20363  m2cpminvid2  20379  pmatcollpwlem  20404  pmatcollpwscmatlem2  20414
  Copyright terms: Public domain W3C validator