Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat2pmatval | Structured version Visualization version GIF version |
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
mat2pmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
mat2pmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mat2pmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
mat2pmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mat2pmatfval.s | ⊢ 𝑆 = (algSc‘𝑃) |
Ref | Expression |
---|---|
mat2pmatval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
2 | mat2pmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | mat2pmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | mat2pmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | mat2pmatfval.s | . . . 4 ⊢ 𝑆 = (algSc‘𝑃) | |
6 | 1, 2, 3, 4, 5 | mat2pmatfval 20347 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))))) |
7 | 6 | 3adant3 1074 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))))) |
8 | oveq 6555 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦)) | |
9 | 8 | fveq2d 6107 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑆‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑀𝑦))) |
10 | 9 | mpt2eq3dv 6619 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
11 | 10 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
12 | simp3 1056 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
13 | simp1 1054 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) | |
14 | mpt2exga 7135 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V) | |
15 | 13, 13, 14 | syl2anc 691 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V) |
16 | 7, 11, 12, 15 | fvmptd 6197 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 Fincfn 7841 Basecbs 15695 algSccascl 19132 Poly1cpl1 19368 Mat cmat 20032 matToPolyMat cmat2pmat 20328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-mat2pmat 20331 |
This theorem is referenced by: mat2pmatvalel 20349 mat2pmatbas 20350 mat2pmatghm 20354 mat2pmatmul 20355 d0mat2pmat 20362 d1mat2pmat 20363 m2cpminvid2 20379 pmatcollpwlem 20404 pmatcollpwscmatlem2 20414 |
Copyright terms: Public domain | W3C validator |