Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  d1mat2pmat Structured version   Visualization version   GIF version

Theorem d1mat2pmat 20363
 Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
d1mat2pmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
d1mat2pmat.b 𝐵 = (Base‘(𝑁 Mat 𝑅))
d1mat2pmat.p 𝑃 = (Poly1𝑅)
d1mat2pmat.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
d1mat2pmat ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})

Proof of Theorem d1mat2pmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 7923 . . . . . 6 {𝐴} ∈ Fin
2 eleq1 2676 . . . . . 6 (𝑁 = {𝐴} → (𝑁 ∈ Fin ↔ {𝐴} ∈ Fin))
31, 2mpbiri 247 . . . . 5 (𝑁 = {𝐴} → 𝑁 ∈ Fin)
43adantr 480 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → 𝑁 ∈ Fin)
543ad2ant2 1076 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simp1 1054 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑅𝑉)
7 simp3 1056 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
8 d1mat2pmat.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
9 eqid 2610 . . . 4 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
10 d1mat2pmat.b . . . 4 𝐵 = (Base‘(𝑁 Mat 𝑅))
11 d1mat2pmat.p . . . 4 𝑃 = (Poly1𝑅)
12 d1mat2pmat.s . . . 4 𝑆 = (algSc‘𝑃)
138, 9, 10, 11, 12mat2pmatval 20348 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
145, 6, 7, 13syl3anc 1318 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
15 id 22 . . . . . . 7 (𝐴𝑉𝐴𝑉)
16 fvex 6113 . . . . . . . 8 (𝑆‘(𝐴𝑀𝐴)) ∈ V
1716a1i 11 . . . . . . 7 (𝐴𝑉 → (𝑆‘(𝐴𝑀𝐴)) ∈ V)
1815, 15, 173jca 1235 . . . . . 6 (𝐴𝑉 → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
1918adantl 481 . . . . 5 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
20193ad2ant2 1076 . . . 4 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
21 eqid 2610 . . . . 5 (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗)))
22 oveq1 6556 . . . . . 6 (𝑖 = 𝐴 → (𝑖𝑀𝑗) = (𝐴𝑀𝑗))
2322fveq2d 6107 . . . . 5 (𝑖 = 𝐴 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘(𝐴𝑀𝑗)))
24 oveq2 6557 . . . . . 6 (𝑗 = 𝐴 → (𝐴𝑀𝑗) = (𝐴𝑀𝐴))
2524fveq2d 6107 . . . . 5 (𝑗 = 𝐴 → (𝑆‘(𝐴𝑀𝑗)) = (𝑆‘(𝐴𝑀𝐴)))
2621, 23, 25mpt2sn 7155 . . . 4 ((𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
2720, 26syl 17 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
28 mpt2eq12 6613 . . . . . . 7 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))))
2928eqeq1d 2612 . . . . . 6 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3029anidms 675 . . . . 5 (𝑁 = {𝐴} → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3130adantr 480 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
32313ad2ant2 1076 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3327, 32mpbird 246 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
3414, 33eqtrd 2644 1 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173  {csn 4125  ⟨cop 4131  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  Basecbs 15695  algSccascl 19132  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-1o 7447  df-en 7842  df-fin 7845  df-mat2pmat 20331 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator