MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatfval Structured version   Visualization version   GIF version

Theorem mat2pmatfval 20347
Description: Value of the matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatfval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Distinct variable groups:   𝐵,𝑚   𝑥,𝑚,𝑦,𝑁   𝑅,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑚)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)   𝑇(𝑥,𝑦,𝑚)   𝑉(𝑥,𝑦,𝑚)

Proof of Theorem mat2pmatfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . 2 𝑇 = (𝑁 matToPolyMat 𝑅)
2 df-mat2pmat 20331 . . . 4 matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))))))
4 oveq12 6558 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
54fveq2d 6107 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
6 mat2pmatfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
7 mat2pmatfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
87fveq2i 6106 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
96, 8eqtr2i 2633 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = 𝐵
105, 9syl6eq 2660 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
11 simpl 472 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
12 fveq2 6103 . . . . . . . . . 10 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
1312fveq2d 6107 . . . . . . . . 9 (𝑟 = 𝑅 → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
1413adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
15 mat2pmatfval.s . . . . . . . . 9 𝑆 = (algSc‘𝑃)
16 mat2pmatfval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1716fveq2i 6106 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘(Poly1𝑅))
1815, 17eqtr2i 2633 . . . . . . . 8 (algSc‘(Poly1𝑅)) = 𝑆
1914, 18syl6eq 2660 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = 𝑆)
2019fveq1d 6105 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑚𝑦)))
2111, 11, 20mpt2eq123dv 6615 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))))
2210, 21mpteq12dv 4663 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
2322adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
24 simpl 472 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
25 elex 3185 . . . 4 (𝑅𝑉𝑅 ∈ V)
2625adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
27 fvex 6113 . . . . 5 (Base‘𝐴) ∈ V
286, 27eqeltri 2684 . . . 4 𝐵 ∈ V
29 mptexg 6389 . . . 4 (𝐵 ∈ V → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
3028, 29mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
313, 23, 24, 26, 30ovmpt2d 6686 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 matToPolyMat 𝑅) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
321, 31syl5eq 2656 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  Basecbs 15695  algSccascl 19132  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-mat2pmat 20331
This theorem is referenced by:  mat2pmatval  20348  mat2pmatf  20352  m2cpmf  20366
  Copyright terms: Public domain W3C validator