Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltdiv23neg Structured version   Visualization version   GIF version

Theorem ltdiv23neg 38558
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ltdiv23neg.1 (𝜑𝐴 ∈ ℝ)
ltdiv23neg.2 (𝜑𝐵 ∈ ℝ)
ltdiv23neg.3 (𝜑𝐵 < 0)
ltdiv23neg.4 (𝜑𝐶 ∈ ℝ)
ltdiv23neg.5 (𝜑𝐶 < 0)
Assertion
Ref Expression
ltdiv23neg (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))

Proof of Theorem ltdiv23neg
StepHypRef Expression
1 ltdiv23neg.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ltdiv23neg.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ltdiv23neg.3 . . . . 5 (𝜑𝐵 < 0)
42, 3ltned 10052 . . . 4 (𝜑𝐵 ≠ 0)
51, 2, 4redivcld 10732 . . 3 (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
6 ltdiv23neg.4 . . 3 (𝜑𝐶 ∈ ℝ)
75, 6, 2, 3ltmulneg 38556 . 2 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵)))
8 recn 9905 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91, 8syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
10 recn 9905 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
112, 10syl 17 . . . 4 (𝜑𝐵 ∈ ℂ)
129, 11, 4divcan1d 10681 . . 3 (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
1312breq2d 4595 . 2 (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴))
14 remulcl 9900 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
156, 2, 14syl2anc 691 . . . 4 (𝜑 → (𝐶 · 𝐵) ∈ ℝ)
16 ltdiv23neg.5 . . . . . 6 (𝜑𝐶 < 0)
176, 16ltned 10052 . . . . 5 (𝜑𝐶 ≠ 0)
186, 17rereccld 10731 . . . 4 (𝜑 → (1 / 𝐶) ∈ ℝ)
196, 16reclt0d 38548 . . . 4 (𝜑 → (1 / 𝐶) < 0)
2015, 1, 18, 19ltmulneg 38556 . . 3 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶))))
21 recn 9905 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
226, 21syl 17 . . . . . 6 (𝜑𝐶 ∈ ℂ)
239, 22, 17divrecd 10683 . . . . 5 (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
2423eqcomd 2616 . . . 4 (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶))
2522, 11mulcld 9939 . . . . . 6 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
2625, 22, 17divrecd 10683 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶)))
27 divcan3 10590 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
28273expb 1258 . . . . . 6 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
2911, 22, 17, 28syl12anc 1316 . . . . 5 (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
3026, 29eqtr3d 2646 . . . 4 (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵)
3124, 30breq12d 4596 . . 3 (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵))
3220, 31bitrd 267 . 2 (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵))
337, 13, 323bitrd 293 1 (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-rp 11709
This theorem is referenced by:  pimrecltneg  39610
  Copyright terms: Public domain W3C validator