Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Structured version   Visualization version   GIF version

Theorem llnexchb2 34173
Description: Line exchange property (compare cvlatexchb2 33640 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))

Proof of Theorem llnexchb2
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 1089 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑁)
2 simp1 1054 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝐾 ∈ HL)
3 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 llnexch.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 33813 . . . . 5 (𝑍𝑁𝑍 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍 ∈ (Base‘𝐾))
7 llnexch.j . . . . 5 = (join‘𝐾)
8 llnexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 33814 . . . 4 ((𝐾 ∈ HL ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
102, 6, 9syl2anc 691 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
111, 10mpbid 221 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)))
12 simp3r 1083 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑋𝑍)
1312necomd 2837 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑋)
14 simp11 1084 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ HL)
15 hllat 33668 . . . . . . . . . . . 12 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1614, 15syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ Lat)
17 simp2l 1080 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝐴)
183, 8atbase 33594 . . . . . . . . . . . 12 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝 ∈ (Base‘𝐾))
20 simp2r 1081 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞𝐴)
213, 8atbase 33594 . . . . . . . . . . . 12 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞 ∈ (Base‘𝐾))
23 simp121 1186 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋𝑁)
243, 4llnbase 33813 . . . . . . . . . . . 12 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋 ∈ (Base‘𝐾))
26 llnexch.l . . . . . . . . . . . 12 = (le‘𝐾)
273, 26, 7latjle12 16885 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
2816, 19, 22, 25, 27syl13anc 1320 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
29 simp3 1056 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝑞)
307, 8, 4llni2 33816 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3114, 17, 20, 29, 30syl31anc 1321 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3226, 4llncmp 33826 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ 𝑁𝑋𝑁) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3314, 31, 23, 32syl3anc 1318 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3428, 33bitr2d 268 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) = 𝑋 ↔ (𝑝 𝑋𝑞 𝑋)))
3534necon3abid 2818 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ ¬ (𝑝 𝑋𝑞 𝑋)))
36 ianor 508 . . . . . . . 8 (¬ (𝑝 𝑋𝑞 𝑋) ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋))
3735, 36syl6bb 275 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋)))
38 simpl11 1129 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝐾 ∈ HL)
3923adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑋𝑁)
40 simp122 1187 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑌𝑁)
4140adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑌𝑁)
42 simpl2l 1107 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑝𝐴)
43 simpl2r 1108 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑞𝐴)
44 simpr 476 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ¬ 𝑝 𝑋)
45 simp13l 1169 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑋 𝑌) ∈ 𝐴)
4645adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → (𝑋 𝑌) ∈ 𝐴)
47 llnexch.m . . . . . . . . . . 11 = (meet‘𝐾)
4826, 7, 47, 8, 4llnexchb2lem 34172 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝𝐴𝑞𝐴 ∧ ¬ 𝑝 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4938, 39, 41, 42, 43, 44, 46, 48syl331anc 1343 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
5049ex 449 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑝 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
51 simpl11 1129 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝐾 ∈ HL)
5223adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑋𝑁)
5340adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑌𝑁)
54 simpl2r 1108 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑞𝐴)
55 simpl2l 1107 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑝𝐴)
56 simpr 476 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ¬ 𝑞 𝑋)
5745adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 𝑌) ∈ 𝐴)
5826, 7, 47, 8, 4llnexchb2lem 34172 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑞𝐴𝑝𝐴 ∧ ¬ 𝑞 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
5951, 52, 53, 54, 55, 56, 57, 58syl331anc 1343 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
607, 8hlatjcom 33672 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) = (𝑞 𝑝))
6151, 55, 54, 60syl3anc 1318 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑝 𝑞) = (𝑞 𝑝))
6261breq2d 4595 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) (𝑞 𝑝)))
6361oveq2d 6565 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 (𝑝 𝑞)) = (𝑋 (𝑞 𝑝)))
6463eqeq2d 2620 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) = (𝑋 (𝑝 𝑞)) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
6559, 62, 643bitr4d 299 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
6665ex 449 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑞 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6750, 66jaod 394 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6837, 67sylbid 229 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
69 neeq1 2844 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (𝑍𝑋 ↔ (𝑝 𝑞) ≠ 𝑋))
70 breq2 4587 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) (𝑝 𝑞)))
71 oveq2 6557 . . . . . . . . 9 (𝑍 = (𝑝 𝑞) → (𝑋 𝑍) = (𝑋 (𝑝 𝑞)))
7271eqeq2d 2620 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) = (𝑋 𝑍) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
7370, 72bibi12d 334 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)) ↔ ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
7469, 73imbi12d 333 . . . . . 6 (𝑍 = (𝑝 𝑞) → ((𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))) ↔ ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))))
7568, 74syl5ibrcom 236 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
76753exp 1256 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → (𝑝𝑞 → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))))
7776imp4a 612 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))))))
7877rexlimdvv 3019 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
7911, 13, 78mp2d 47 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  LLinesclln 33795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-psubsp 33807  df-pmap 33808  df-padd 34100
This theorem is referenced by:  llnexch2N  34174  cdleme20l  34628
  Copyright terms: Public domain W3C validator