Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Structured version   Unicode version

Theorem llnexchb2 33510
Description: Line exchange property (compare cvlatexchb2 32977 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l  |-  .<_  =  ( le `  K )
llnexch.j  |-  .\/  =  ( join `  K )
llnexch.m  |-  ./\  =  ( meet `  K )
llnexch.a  |-  A  =  ( Atoms `  K )
llnexch.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnexchb2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )

Proof of Theorem llnexchb2
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 1023 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  e.  N )
2 simp1 988 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  K  e.  HL )
3 eqid 2441 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 llnexch.n . . . . . 6  |-  N  =  ( LLines `  K )
53, 4llnbase 33150 . . . . 5  |-  ( Z  e.  N  ->  Z  e.  ( Base `  K
) )
61, 5syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  e.  ( Base `  K ) )
7 llnexch.j . . . . 5  |-  .\/  =  ( join `  K )
8 llnexch.a . . . . 5  |-  A  =  ( Atoms `  K )
93, 7, 8, 4islln3 33151 . . . 4  |-  ( ( K  e.  HL  /\  Z  e.  ( Base `  K ) )  -> 
( Z  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Z  =  ( p  .\/  q ) ) ) )
102, 6, 9syl2anc 661 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( Z  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Z  =  ( p  .\/  q ) ) ) )
111, 10mpbid 210 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Z  =  (
p  .\/  q )
) )
12 simp3r 1017 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  X  =/=  Z )
1312necomd 2693 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  =/=  X )
14 simp11 1018 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  K  e.  HL )
15 hllat 33005 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  Lat )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  K  e.  Lat )
17 simp2l 1014 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  e.  A )
183, 8atbase 32931 . . . . . . . . . . . 12  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
1917, 18syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  e.  ( Base `  K
) )
20 simp2r 1015 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  q  e.  A )
213, 8atbase 32931 . . . . . . . . . . . 12  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
2220, 21syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  q  e.  ( Base `  K
) )
23 simp121 1120 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  X  e.  N )
243, 4llnbase 33150 . . . . . . . . . . . 12  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
2523, 24syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  X  e.  ( Base `  K
) )
26 llnexch.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
273, 26, 7latjle12 15230 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  q  e.  ( Base `  K )  /\  X  e.  ( Base `  K
) ) )  -> 
( ( p  .<_  X  /\  q  .<_  X )  <-> 
( p  .\/  q
)  .<_  X ) )
2816, 19, 22, 25, 27syl13anc 1220 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .<_  X  /\  q  .<_  X )  <->  ( p  .\/  q )  .<_  X ) )
29 simp3 990 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  =/=  q )
307, 8, 4llni2 33153 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  p  =/=  q
)  ->  ( p  .\/  q )  e.  N
)
3114, 17, 20, 29, 30syl31anc 1221 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
p  .\/  q )  e.  N )
3226, 4llncmp 33163 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( p  .\/  q )  e.  N  /\  X  e.  N )  ->  (
( p  .\/  q
)  .<_  X  <->  ( p  .\/  q )  =  X ) )
3314, 31, 23, 32syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  .<_  X  <->  ( p  .\/  q )  =  X ) )
3428, 33bitr2d 254 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =  X  <->  ( p  .<_  X  /\  q  .<_  X ) ) )
3534necon3abid 2639 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  <->  -.  (
p  .<_  X  /\  q  .<_  X ) ) )
36 ianor 488 . . . . . . . 8  |-  ( -.  ( p  .<_  X  /\  q  .<_  X )  <->  ( -.  p  .<_  X  \/  -.  q  .<_  X ) )
3735, 36syl6bb 261 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  <->  ( -.  p  .<_  X  \/  -.  q  .<_  X ) ) )
38 simpl11 1063 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  K  e.  HL )
3923adantr 465 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  X  e.  N )
40 simp122 1121 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  Y  e.  N )
4140adantr 465 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  Y  e.  N )
42 simpl2l 1041 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  p  e.  A )
43 simpl2r 1042 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
q  e.  A )
44 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  -.  p  .<_  X )
45 simp13l 1103 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( X  ./\  Y )  e.  A )
4645adantr 465 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
( X  ./\  Y
)  e.  A )
47 llnexch.m . . . . . . . . . . 11  |-  ./\  =  ( meet `  K )
4826, 7, 47, 8, 4llnexchb2lem 33509 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( p  e.  A  /\  q  e.  A  /\  -.  p  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) )
4938, 39, 41, 42, 43, 44, 46, 48syl331anc 1243 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
5049ex 434 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( -.  p  .<_  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
51 simpl11 1063 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  K  e.  HL )
5223adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  X  e.  N )
5340adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  Y  e.  N )
54 simpl2r 1042 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
q  e.  A )
55 simpl2l 1041 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  p  e.  A )
56 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  -.  q  .<_  X )
5745adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( X  ./\  Y
)  e.  A )
5826, 7, 47, 8, 4llnexchb2lem 33509 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( q  e.  A  /\  p  e.  A  /\  -.  q  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( q  .\/  p
)  <->  ( X  ./\  Y )  =  ( X 
./\  ( q  .\/  p ) ) ) )
5951, 52, 53, 54, 55, 56, 57, 58syl331anc 1243 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( q  .\/  p )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( q  .\/  p ) ) ) )
607, 8hlatjcom 33009 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  =  ( q 
.\/  p ) )
6151, 55, 54, 60syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( p  .\/  q
)  =  ( q 
.\/  p ) )
6261breq2d 4302 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  .<_  ( q 
.\/  p ) ) )
6361oveq2d 6105 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( X  ./\  (
p  .\/  q )
)  =  ( X 
./\  ( q  .\/  p ) ) )
6463eqeq2d 2452 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  =  ( X 
./\  ( p  .\/  q ) )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( q  .\/  p ) ) ) )
6559, 62, 643bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
6665ex 434 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( -.  q  .<_  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
6750, 66jaod 380 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( -.  p  .<_  X  \/  -.  q  .<_  X )  ->  (
( X  ./\  Y
)  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
6837, 67sylbid 215 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
69 neeq1 2614 . . . . . . 7  |-  ( Z  =  ( p  .\/  q )  ->  ( Z  =/=  X  <->  ( p  .\/  q )  =/=  X
) )
70 breq2 4294 . . . . . . . 8  |-  ( Z  =  ( p  .\/  q )  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  .<_  ( p 
.\/  q ) ) )
71 oveq2 6097 . . . . . . . . 9  |-  ( Z  =  ( p  .\/  q )  ->  ( X  ./\  Z )  =  ( X  ./\  (
p  .\/  q )
) )
7271eqeq2d 2452 . . . . . . . 8  |-  ( Z  =  ( p  .\/  q )  ->  (
( X  ./\  Y
)  =  ( X 
./\  Z )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
7370, 72bibi12d 321 . . . . . . 7  |-  ( Z  =  ( p  .\/  q )  ->  (
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
)  <->  ( ( X 
./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) ) )
7469, 73imbi12d 320 . . . . . 6  |-  ( Z  =  ( p  .\/  q )  ->  (
( Z  =/=  X  ->  ( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )  <->  ( (
p  .\/  q )  =/=  X  ->  ( ( X  ./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) ) ) )
7568, 74syl5ibrcom 222 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( Z  =  ( p  .\/  q )  ->  ( Z  =/=  X  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) ) ) )
76753exp 1186 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( p  e.  A  /\  q  e.  A )  ->  (
p  =/=  q  -> 
( Z  =  ( p  .\/  q )  ->  ( Z  =/= 
X  ->  ( ( X  ./\  Y )  .<_  Z 
<->  ( X  ./\  Y
)  =  ( X 
./\  Z ) ) ) ) ) ) )
7776imp4a 589 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( p  e.  A  /\  q  e.  A )  ->  (
( p  =/=  q  /\  Z  =  (
p  .\/  q )
)  ->  ( Z  =/=  X  ->  ( ( X  ./\  Y )  .<_  Z 
<->  ( X  ./\  Y
)  =  ( X 
./\  Z ) ) ) ) ) )
7877rexlimdvv 2845 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Z  =  ( p  .\/  q
) )  ->  ( Z  =/=  X  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) ) ) )
7911, 13, 78mp2d 45 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   E.wrex 2714   class class class wbr 4290   ` cfv 5416  (class class class)co 6089   Basecbs 14172   lecple 14243   joincjn 15112   meetcmee 15113   Latclat 15213   Atomscatm 32905   HLchlt 32992   LLinesclln 33132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-poset 15114  df-plt 15126  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-p0 15207  df-lat 15214  df-clat 15276  df-oposet 32818  df-ol 32820  df-oml 32821  df-covers 32908  df-ats 32909  df-atl 32940  df-cvlat 32964  df-hlat 32993  df-llines 33139  df-psubsp 33144  df-pmap 33145  df-padd 33437
This theorem is referenced by:  llnexch2N  33511  cdleme20l  33963
  Copyright terms: Public domain W3C validator