Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautj Structured version   Visualization version   GIF version

Theorem lautj 34397
Description: Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lautj.b 𝐵 = (Base‘𝐾)
lautj.j = (join‘𝐾)
lautj.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautj ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautj
StepHypRef Expression
1 lautj.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2610 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 472 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 simpr1 1060 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
53, 4jca 553 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐾 ∈ Lat ∧ 𝐹𝐼))
6 lautj.j . . . . 5 = (join‘𝐾)
71, 6latjcl 16874 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
873adant3r1 1266 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) ∈ 𝐵)
9 lautj.i . . . 4 𝐼 = (LAut‘𝐾)
101, 9lautcl 34391 . . 3 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
115, 8, 10syl2anc 691 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
12 simpr2 1061 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
131, 9lautcl 34391 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
145, 12, 13syl2anc 691 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
15 simpr3 1062 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
161, 9lautcl 34391 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
175, 15, 16syl2anc 691 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
181, 6latjcl 16874 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
193, 14, 17, 18syl3anc 1318 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
201, 9laut1o 34389 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
21203ad2antr1 1219 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹:𝐵1-1-onto𝐵)
22 f1ocnvfv1 6432 . . . . 5 ((𝐹:𝐵1-1-onto𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝐹‘(𝑋 𝑌))) = (𝑋 𝑌))
2321, 8, 22syl2anc 691 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘(𝑋 𝑌))) = (𝑋 𝑌))
241, 2, 6latlej1 16883 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → (𝐹𝑋)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
253, 14, 17, 24syl3anc 1318 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
26 f1ocnvfv2 6433 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
2721, 19, 26syl2anc 691 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
2825, 27breqtrrd 4611 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
29 f1ocnvdm 6440 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
3021, 19, 29syl2anc 691 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
311, 2, 9lautle 34388 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → (𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
325, 12, 30, 31syl12anc 1316 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
3328, 32mpbird 246 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
341, 2, 6latlej2 16884 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → (𝐹𝑌)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
353, 14, 17, 34syl3anc 1318 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
3635, 27breqtrrd 4611 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
371, 2, 9lautle 34388 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑌𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → (𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
385, 15, 30, 37syl12anc 1316 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
3936, 38mpbird 246 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
401, 2, 6latjle12 16885 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ∧ 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))) ↔ (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
413, 12, 15, 30, 40syl13anc 1320 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ∧ 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))) ↔ (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
4233, 39, 41mpbi2and 958 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
4323, 42eqbrtrd 4605 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
441, 2, 9lautcnvle 34393 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝐹‘(𝑋 𝑌)) ∈ 𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)) → ((𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)) ↔ (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
455, 11, 19, 44syl12anc 1316 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)) ↔ (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
4643, 45mpbird 246 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
471, 2, 6latlej1 16883 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
48473adant3r1 1266 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
491, 2, 9lautle 34388 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → (𝑋(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
505, 12, 8, 49syl12anc 1316 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5148, 50mpbid 221 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)))
521, 2, 6latlej2 16884 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
53523adant3r1 1266 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
541, 2, 9lautle 34388 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → (𝑌(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
555, 15, 8, 54syl12anc 1316 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑌(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5653, 55mpbid 221 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌)))
571, 2, 6latjle12 16885 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋 𝑌)) ∈ 𝐵)) → (((𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)) ∧ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))) ↔ ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
583, 14, 17, 11, 57syl13anc 1320 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)) ∧ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))) ↔ ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5951, 56, 58mpbi2and 958 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌)))
601, 2, 3, 11, 19, 46, 59latasymd 16880 1 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  ccnv 5037  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  LAutclaut 34289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-laut 34293
This theorem is referenced by:  ltrnj  34436
  Copyright terms: Public domain W3C validator