Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcvr Structured version   Visualization version   GIF version

Theorem lautcvr 34396
Description: Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
lautcvr.b 𝐵 = (Base‘𝐾)
lautcvr.c 𝐶 = ( ⋖ ‘𝐾)
lautcvr.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautcvr ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))

Proof of Theorem lautcvr
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautcvr.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2610 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 lautcvr.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3lautlt 34395 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(lt‘𝐾)𝑌 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑌)))
5 simpll 786 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝐾𝐴)
6 simplr1 1096 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝐹𝐼)
7 simplr2 1097 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝑋𝐵)
8 simpr 476 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝑤𝐵)
91, 2, 3lautlt 34395 . . . . . . . . 9 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑤𝐵)) → (𝑋(lt‘𝐾)𝑤 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑤)))
105, 6, 7, 8, 9syl13anc 1320 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (𝑋(lt‘𝐾)𝑤 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑤)))
11 simplr3 1098 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → 𝑌𝐵)
121, 2, 3lautlt 34395 . . . . . . . . 9 ((𝐾𝐴 ∧ (𝐹𝐼𝑤𝐵𝑌𝐵)) → (𝑤(lt‘𝐾)𝑌 ↔ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)))
135, 6, 8, 11, 12syl13anc 1320 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (𝑤(lt‘𝐾)𝑌 ↔ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)))
1410, 13anbi12d 743 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → ((𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌))))
151, 3lautcl 34391 . . . . . . . . 9 (((𝐾𝐴𝐹𝐼) ∧ 𝑤𝐵) → (𝐹𝑤) ∈ 𝐵)
165, 6, 8, 15syl21anc 1317 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (𝐹𝑤) ∈ 𝐵)
17 breq2 4587 . . . . . . . . . . 11 (𝑧 = (𝐹𝑤) → ((𝐹𝑋)(lt‘𝐾)𝑧 ↔ (𝐹𝑋)(lt‘𝐾)(𝐹𝑤)))
18 breq1 4586 . . . . . . . . . . 11 (𝑧 = (𝐹𝑤) → (𝑧(lt‘𝐾)(𝐹𝑌) ↔ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)))
1917, 18anbi12d 743 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌))))
2019rspcev 3282 . . . . . . . . 9 (((𝐹𝑤) ∈ 𝐵 ∧ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌))) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))
2120ex 449 . . . . . . . 8 ((𝐹𝑤) ∈ 𝐵 → (((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
2216, 21syl 17 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → (((𝐹𝑋)(lt‘𝐾)(𝐹𝑤) ∧ (𝐹𝑤)(lt‘𝐾)(𝐹𝑌)) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
2314, 22sylbid 229 . . . . . 6 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑤𝐵) → ((𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
2423rexlimdva 3013 . . . . 5 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) → ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
25 simpll 786 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝐾𝐴)
26 simplr1 1096 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝐹𝐼)
27 simplr2 1097 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝑋𝐵)
281, 3laut1o 34389 . . . . . . . . . . . 12 ((𝐾𝐴𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
2925, 26, 28syl2anc 691 . . . . . . . . . . 11 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝐹:𝐵1-1-onto𝐵)
30 f1ocnvdm 6440 . . . . . . . . . . 11 ((𝐹:𝐵1-1-onto𝐵𝑧𝐵) → (𝐹𝑧) ∈ 𝐵)
3129, 30sylancom 698 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝐹𝑧) ∈ 𝐵)
321, 2, 3lautlt 34395 . . . . . . . . . 10 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵 ∧ (𝐹𝑧) ∈ 𝐵)) → (𝑋(lt‘𝐾)(𝐹𝑧) ↔ (𝐹𝑋)(lt‘𝐾)(𝐹‘(𝐹𝑧))))
3325, 26, 27, 31, 32syl13anc 1320 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝑋(lt‘𝐾)(𝐹𝑧) ↔ (𝐹𝑋)(lt‘𝐾)(𝐹‘(𝐹𝑧))))
34 f1ocnvfv2 6433 . . . . . . . . . . 11 ((𝐹:𝐵1-1-onto𝐵𝑧𝐵) → (𝐹‘(𝐹𝑧)) = 𝑧)
3529, 34sylancom 698 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝐹‘(𝐹𝑧)) = 𝑧)
3635breq2d 4595 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹𝑋)(lt‘𝐾)(𝐹‘(𝐹𝑧)) ↔ (𝐹𝑋)(lt‘𝐾)𝑧))
3733, 36bitr2d 268 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹𝑋)(lt‘𝐾)𝑧𝑋(lt‘𝐾)(𝐹𝑧)))
38 simplr3 1098 . . . . . . . . . 10 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → 𝑌𝐵)
391, 2, 3lautlt 34395 . . . . . . . . . 10 ((𝐾𝐴 ∧ (𝐹𝐼 ∧ (𝐹𝑧) ∈ 𝐵𝑌𝐵)) → ((𝐹𝑧)(lt‘𝐾)𝑌 ↔ (𝐹‘(𝐹𝑧))(lt‘𝐾)(𝐹𝑌)))
4025, 26, 31, 38, 39syl13anc 1320 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹𝑧)(lt‘𝐾)𝑌 ↔ (𝐹‘(𝐹𝑧))(lt‘𝐾)(𝐹𝑌)))
4135breq1d 4593 . . . . . . . . 9 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝐹‘(𝐹𝑧))(lt‘𝐾)(𝐹𝑌) ↔ 𝑧(lt‘𝐾)(𝐹𝑌)))
4240, 41bitr2d 268 . . . . . . . 8 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (𝑧(lt‘𝐾)(𝐹𝑌) ↔ (𝐹𝑧)(lt‘𝐾)𝑌))
4337, 42anbi12d 743 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) ↔ (𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌)))
44 breq2 4587 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (𝑋(lt‘𝐾)𝑤𝑋(lt‘𝐾)(𝐹𝑧)))
45 breq1 4586 . . . . . . . . . . 11 (𝑤 = (𝐹𝑧) → (𝑤(lt‘𝐾)𝑌 ↔ (𝐹𝑧)(lt‘𝐾)𝑌))
4644, 45anbi12d 743 . . . . . . . . . 10 (𝑤 = (𝐹𝑧) → ((𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ (𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌)))
4746rspcev 3282 . . . . . . . . 9 (((𝐹𝑧) ∈ 𝐵 ∧ (𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌)) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌))
4847ex 449 . . . . . . . 8 ((𝐹𝑧) ∈ 𝐵 → ((𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
4931, 48syl 17 . . . . . . 7 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → ((𝑋(lt‘𝐾)(𝐹𝑧) ∧ (𝐹𝑧)(lt‘𝐾)𝑌) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
5043, 49sylbid 229 . . . . . 6 (((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) ∧ 𝑧𝐵) → (((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
5150rexlimdva 3013 . . . . 5 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)) → ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)))
5224, 51impbid 201 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
5352notbid 307 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌) ↔ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌))))
544, 53anbi12d 743 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌)) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑌) ∧ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))))
55 lautcvr.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
561, 2, 55cvrval 33574 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌))))
57563adant3r1 1266 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑤𝐵 (𝑋(lt‘𝐾)𝑤𝑤(lt‘𝐾)𝑌))))
58 simpl 472 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾𝐴)
59 simpr1 1060 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
60 simpr2 1061 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
611, 3lautcl 34391 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
6258, 59, 60, 61syl21anc 1317 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
63 simpr3 1062 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
641, 3lautcl 34391 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
6558, 59, 63, 64syl21anc 1317 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
661, 2, 55cvrval 33574 . . 3 ((𝐾𝐴 ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋)𝐶(𝐹𝑌) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑌) ∧ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))))
6758, 62, 65, 66syl3anc 1318 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)𝐶(𝐹𝑌) ↔ ((𝐹𝑋)(lt‘𝐾)(𝐹𝑌) ∧ ¬ ∃𝑧𝐵 ((𝐹𝑋)(lt‘𝐾)𝑧𝑧(lt‘𝐾)(𝐹𝑌)))))
6854, 57, 673bitr4d 299 1 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  ccnv 5037  1-1-ontowf1o 5803  cfv 5804  Basecbs 15695  ltcplt 16764  ccvr 33567  LAutclaut 34289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-plt 16781  df-covers 33571  df-laut 34293
This theorem is referenced by:  ltrncvr  34437
  Copyright terms: Public domain W3C validator