Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnvle | Structured version Visualization version GIF version |
Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
Ref | Expression |
---|---|
lautcnvle.b | ⊢ 𝐵 = (Base‘𝐾) |
lautcnvle.l | ⊢ ≤ = (le‘𝐾) |
lautcnvle.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
lautcnvle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼)) | |
2 | lautcnvle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | lautcnvle.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
4 | 2, 3 | laut1o 34389 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) |
5 | 4 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
6 | simprl 790 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | f1ocnvdm 6440 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡𝐹‘𝑋) ∈ 𝐵) | |
8 | 5, 6, 7 | syl2anc 691 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑋) ∈ 𝐵) |
9 | simprr 792 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
10 | f1ocnvdm 6440 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (◡𝐹‘𝑌) ∈ 𝐵) | |
11 | 5, 9, 10 | syl2anc 691 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑌) ∈ 𝐵) |
12 | lautcnvle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
13 | 2, 12, 3 | lautle 34388 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ ((◡𝐹‘𝑋) ∈ 𝐵 ∧ (◡𝐹‘𝑌) ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
14 | 1, 8, 11, 13 | syl12anc 1316 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
15 | f1ocnvfv2 6433 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) | |
16 | 5, 6, 15 | syl2anc 691 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
17 | f1ocnvfv2 6433 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) | |
18 | 5, 9, 17 | syl2anc 691 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) |
19 | 16, 18 | breq12d 4596 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
20 | 14, 19 | bitr2d 268 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ◡ccnv 5037 –1-1-onto→wf1o 5803 ‘cfv 5804 Basecbs 15695 lecple 15775 LAutclaut 34289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-laut 34293 |
This theorem is referenced by: lautcnv 34394 lautj 34397 lautm 34398 ltrncnvleN 34434 ltrneq2 34452 |
Copyright terms: Public domain | W3C validator |