MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperp2d Structured version   Visualization version   GIF version

Theorem isperp2d 25411
Description: One direction of isperp2 25410. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp2.b (𝜑𝐵 ∈ ran 𝐿)
isperp2.x (𝜑𝑋 ∈ (𝐴𝐵))
isperp2d.u (𝜑𝑈𝐴)
isperp2d.v (𝜑𝑉𝐵)
isperp2d.p (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
isperp2d (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))

Proof of Theorem isperp2d
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp2d.p . . 3 (𝜑𝐴(⟂G‘𝐺)𝐵)
2 isperp.p . . . 4 𝑃 = (Base‘𝐺)
3 isperp.d . . . 4 = (dist‘𝐺)
4 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
5 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
6 isperp.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 isperp.a . . . 4 (𝜑𝐴 ∈ ran 𝐿)
8 isperp2.b . . . 4 (𝜑𝐵 ∈ ran 𝐿)
9 isperp2.x . . . 4 (𝜑𝑋 ∈ (𝐴𝐵))
102, 3, 4, 5, 6, 7, 8, 9isperp2 25410 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
111, 10mpbid 221 . 2 (𝜑 → ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
12 isperp2d.u . . 3 (𝜑𝑈𝐴)
13 isperp2d.v . . 3 (𝜑𝑉𝐵)
14 id 22 . . . . . 6 (𝑢 = 𝑈𝑢 = 𝑈)
15 eqidd 2611 . . . . . 6 (𝑢 = 𝑈𝑋 = 𝑋)
16 eqidd 2611 . . . . . 6 (𝑢 = 𝑈𝑣 = 𝑣)
1714, 15, 16s3eqd 13460 . . . . 5 (𝑢 = 𝑈 → ⟨“𝑢𝑋𝑣”⟩ = ⟨“𝑈𝑋𝑣”⟩)
1817eleq1d 2672 . . . 4 (𝑢 = 𝑈 → (⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑈𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
19 eqidd 2611 . . . . . 6 (𝑣 = 𝑉𝑈 = 𝑈)
20 eqidd 2611 . . . . . 6 (𝑣 = 𝑉𝑋 = 𝑋)
21 id 22 . . . . . 6 (𝑣 = 𝑉𝑣 = 𝑉)
2219, 20, 21s3eqd 13460 . . . . 5 (𝑣 = 𝑉 → ⟨“𝑈𝑋𝑣”⟩ = ⟨“𝑈𝑋𝑉”⟩)
2322eleq1d 2672 . . . 4 (𝑣 = 𝑉 → (⟨“𝑈𝑋𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺)))
2418, 23rspc2v 3293 . . 3 ((𝑈𝐴𝑉𝐵) → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺)))
2512, 13, 24syl2anc 691 . 2 (𝜑 → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺)))
2611, 25mpd 15 1 (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  cin 3539   class class class wbr 4583  ran crn 5039  cfv 5804  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  ∟Gcrag 25388  ⟂Gcperpg 25390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-mir 25348  df-rag 25389  df-perpg 25391
This theorem is referenced by:  perprag  25418
  Copyright terms: Public domain W3C validator