MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem9 Structured version   Visualization version   GIF version

Theorem isf32lem9 9066
Description: Lemma for isfin3-2 9072. Construction of the onto function. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
isf32lem.g 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
Assertion
Ref Expression
isf32lem9 (𝜑𝐿:𝐺onto→ω)
Distinct variable groups:   𝑥,𝑤   𝑡,𝐺   𝑥,𝐿   𝑡,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝜑   𝑤,𝐹,𝑥,𝑦   𝑆,𝑠,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦   𝐽,𝑠,𝑡,𝑤,𝑥,𝑦   𝐾,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑣,𝑢,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢,𝑠)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)   𝐿(𝑦,𝑤,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem isf32lem9
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.g . . . 4 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
2 ssab2 3649 . . . . . . 7 {𝑠 ∣ (𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))} ⊆ ω
3 iotacl 5791 . . . . . . 7 (∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ {𝑠 ∣ (𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))})
42, 3sseldi 3566 . . . . . 6 (∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
5 iotanul 5783 . . . . . . 7 (¬ ∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) = ∅)
6 peano1 6977 . . . . . . 7 ∅ ∈ ω
75, 6syl6eqel 2696 . . . . . 6 (¬ ∃!𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
84, 7pm2.61i 175 . . . . 5 (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω
98a1i 11 . . . 4 (𝑡𝐺 → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ ω)
101, 9fmpti 6291 . . 3 𝐿:𝐺⟶ω
1110a1i 11 . 2 (𝜑𝐿:𝐺⟶ω)
12 isf32lem.a . . . . . 6 (𝜑𝐹:ω⟶𝒫 𝐺)
13 isf32lem.b . . . . . 6 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
14 isf32lem.c . . . . . 6 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
15 isf32lem.d . . . . . 6 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
16 isf32lem.e . . . . . 6 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
17 isf32lem.f . . . . . 6 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
1812, 13, 14, 15, 16, 17isf32lem6 9063 . . . . 5 ((𝜑𝑎 ∈ ω) → (𝐾𝑎) ≠ ∅)
19 n0 3890 . . . . 5 ((𝐾𝑎) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝐾𝑎))
2018, 19sylib 207 . . . 4 ((𝜑𝑎 ∈ ω) → ∃𝑏 𝑏 ∈ (𝐾𝑎))
2112, 13, 14, 15, 16, 17isf32lem8 9065 . . . . . . . . 9 ((𝜑𝑎 ∈ ω) → (𝐾𝑎) ⊆ 𝐺)
2221sselda 3568 . . . . . . . 8 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → 𝑏𝐺)
23 eleq1 2676 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑡 ∈ (𝐾𝑠) ↔ 𝑏 ∈ (𝐾𝑠)))
2423anbi2d 736 . . . . . . . . . . . 12 (𝑡 = 𝑏 → ((𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠)) ↔ (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
2524iotabidv 5789 . . . . . . . . . . 11 (𝑡 = 𝑏 → (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
26 iotaex 5785 . . . . . . . . . . 11 (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))) ∈ V
2725, 1, 26fvmpt3i 6196 . . . . . . . . . 10 (𝑏𝐺 → (𝐿𝑏) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
2822, 27syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (𝐿𝑏) = (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
29 simp1r 1079 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → 𝑏 ∈ (𝐾𝑎))
30 simpl1 1057 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝜑)
31 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑠𝑎)
3231necomd 2837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑎𝑠)
33 simpl2 1058 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑎 ∈ ω)
34 simpl3 1059 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → 𝑠 ∈ ω)
3512, 13, 14, 15, 16, 17isf32lem7 9064 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎𝑠) ∧ (𝑎 ∈ ω ∧ 𝑠 ∈ ω)) → ((𝐾𝑎) ∩ (𝐾𝑠)) = ∅)
3630, 32, 33, 34, 35syl22anc 1319 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → ((𝐾𝑎) ∩ (𝐾𝑠)) = ∅)
37 disj1 3971 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝑎) ∩ (𝐾𝑠)) = ∅ ↔ ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
3836, 37sylib 207 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) ∧ 𝑠𝑎) → ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
3938ex 449 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → ∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠))))
40 sp 2041 . . . . . . . . . . . . . . . . . . 19 (∀𝑏(𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)) → (𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠)))
4139, 40syl6 34 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → (𝑏 ∈ (𝐾𝑎) → ¬ 𝑏 ∈ (𝐾𝑠))))
4241com23 84 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠))))
43423adant1r 1311 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠))))
4429, 43mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑠𝑎 → ¬ 𝑏 ∈ (𝐾𝑠)))
4544necon4ad 2801 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω) → (𝑏 ∈ (𝐾𝑠) → 𝑠 = 𝑎))
46453expia 1259 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (𝑠 ∈ ω → (𝑏 ∈ (𝐾𝑠) → 𝑠 = 𝑎)))
4746impd 446 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) → 𝑠 = 𝑎))
48 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → (𝑠 ∈ ω ↔ 𝑎 ∈ ω))
49 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑎 → (𝐾𝑠) = (𝐾𝑎))
5049eleq2d 2673 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → (𝑏 ∈ (𝐾𝑠) ↔ 𝑏 ∈ (𝐾𝑎)))
5148, 50anbi12d 743 . . . . . . . . . . . . . . 15 (𝑠 = 𝑎 → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) ↔ (𝑎 ∈ ω ∧ 𝑏 ∈ (𝐾𝑎))))
5251biimprcd 239 . . . . . . . . . . . . . 14 ((𝑎 ∈ ω ∧ 𝑏 ∈ (𝐾𝑎)) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5352ancoms 468 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝐾𝑎) ∧ 𝑎 ∈ ω) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5453adantll 746 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (𝑠 = 𝑎 → (𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))))
5547, 54impbid 201 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → ((𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠)) ↔ 𝑠 = 𝑎))
5655iota5 5788 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝐾𝑎)) ∧ 𝑎 ∈ ω) → (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))) = 𝑎)
5756an32s 842 . . . . . . . . 9 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (℩𝑠(𝑠 ∈ ω ∧ 𝑏 ∈ (𝐾𝑠))) = 𝑎)
5828, 57eqtr2d 2645 . . . . . . . 8 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → 𝑎 = (𝐿𝑏))
5922, 58jca 553 . . . . . . 7 (((𝜑𝑎 ∈ ω) ∧ 𝑏 ∈ (𝐾𝑎)) → (𝑏𝐺𝑎 = (𝐿𝑏)))
6059ex 449 . . . . . 6 ((𝜑𝑎 ∈ ω) → (𝑏 ∈ (𝐾𝑎) → (𝑏𝐺𝑎 = (𝐿𝑏))))
6160eximdv 1833 . . . . 5 ((𝜑𝑎 ∈ ω) → (∃𝑏 𝑏 ∈ (𝐾𝑎) → ∃𝑏(𝑏𝐺𝑎 = (𝐿𝑏))))
62 df-rex 2902 . . . . 5 (∃𝑏𝐺 𝑎 = (𝐿𝑏) ↔ ∃𝑏(𝑏𝐺𝑎 = (𝐿𝑏)))
6361, 62syl6ibr 241 . . . 4 ((𝜑𝑎 ∈ ω) → (∃𝑏 𝑏 ∈ (𝐾𝑎) → ∃𝑏𝐺 𝑎 = (𝐿𝑏)))
6420, 63mpd 15 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏𝐺 𝑎 = (𝐿𝑏))
6564ralrimiva 2949 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏𝐺 𝑎 = (𝐿𝑏))
66 dffo3 6282 . 2 (𝐿:𝐺onto→ω ↔ (𝐿:𝐺⟶ω ∧ ∀𝑎 ∈ ω ∃𝑏𝐺 𝑎 = (𝐿𝑏)))
6711, 65, 66sylanbrc 695 1 (𝜑𝐿:𝐺onto→ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  cin 3539  wss 3540  wpss 3541  c0 3874  𝒫 cpw 4108   cint 4410   class class class wbr 4583  cmpt 4643  ran crn 5039  ccom 5042  suc csuc 5642  cio 5766  wf 5800  ontowfo 5802  cfv 5804  crio 6510  ωcom 6957  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648
This theorem is referenced by:  isf32lem10  9067
  Copyright terms: Public domain W3C validator