MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj1 Structured version   Visualization version   GIF version

Theorem disj1 3971
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
disj1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj1
StepHypRef Expression
1 disj 3969 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 df-ral 2901 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
31, 2bitri 263 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wal 1473   = wceq 1475  wcel 1977  wral 2896  cin 3539  c0 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-dif 3543  df-in 3547  df-nul 3875
This theorem is referenced by:  reldisj  3972  disj3  3973  undif4  3987  disjsn  4192  funun  5846  zfregs2  8492  dfac5lem4  8832  isf32lem9  9066  fzodisj  12371  fzodisjsn  12374  bnj1280  30342  zfregs2VD  38098
  Copyright terms: Public domain W3C validator