MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem9 Structured version   Unicode version

Theorem isf32lem9 8522
Description: Lemma for isfin3-2 8528. Construction of the onto function. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
isf32lem.d  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
isf32lem.e  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S  ( v  i^i  S
)  ~~  u )
)
isf32lem.f  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
isf32lem.g  |-  L  =  ( t  e.  G  |->  ( iota s ( s  e.  om  /\  t  e.  ( K `  s ) ) ) )
Assertion
Ref Expression
isf32lem9  |-  ( ph  ->  L : G -onto-> om )
Distinct variable groups:    x, w    t, G    x, L    t,
s, u, v, w, x, y, ph    w, F, x, y    S, s, t, u, v, w, x, y    J, s, t, w, x, y    K, s, t, x, y
Allowed substitution hints:    F( v, u, t, s)    G( x, y, w, v, u, s)    J( v, u)    K( w, v, u)    L( y, w, v, u, t, s)

Proof of Theorem isf32lem9
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.g . . . 4  |-  L  =  ( t  e.  G  |->  ( iota s ( s  e.  om  /\  t  e.  ( K `  s ) ) ) )
2 ssab2 3431 . . . . . . 7  |-  { s  |  ( s  e. 
om  /\  t  e.  ( K `  s ) ) }  C_  om
3 iotacl 5399 . . . . . . 7  |-  ( E! s ( s  e. 
om  /\  t  e.  ( K `  s ) )  ->  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  e.  {
s  |  ( s  e.  om  /\  t  e.  ( K `  s
) ) } )
42, 3sseldi 3349 . . . . . 6  |-  ( E! s ( s  e. 
om  /\  t  e.  ( K `  s ) )  ->  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  e.  om )
5 iotanul 5391 . . . . . . 7  |-  ( -.  E! s ( s  e.  om  /\  t  e.  ( K `  s
) )  ->  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  =  (/) )
6 peano1 6490 . . . . . . 7  |-  (/)  e.  om
75, 6syl6eqel 2526 . . . . . 6  |-  ( -.  E! s ( s  e.  om  /\  t  e.  ( K `  s
) )  ->  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  e.  om )
84, 7pm2.61i 164 . . . . 5  |-  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  e.  om
98a1i 11 . . . 4  |-  ( t  e.  G  ->  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  e.  om )
101, 9fmpti 5861 . . 3  |-  L : G
--> om
1110a1i 11 . 2  |-  ( ph  ->  L : G --> om )
12 isf32lem.a . . . . . 6  |-  ( ph  ->  F : om --> ~P G
)
13 isf32lem.b . . . . . 6  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
14 isf32lem.c . . . . . 6  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
15 isf32lem.d . . . . . 6  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
16 isf32lem.e . . . . . 6  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S  ( v  i^i  S
)  ~~  u )
)
17 isf32lem.f . . . . . 6  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
1812, 13, 14, 15, 16, 17isf32lem6 8519 . . . . 5  |-  ( (
ph  /\  a  e.  om )  ->  ( K `  a )  =/=  (/) )
19 n0 3641 . . . . 5  |-  ( ( K `  a )  =/=  (/)  <->  E. b  b  e.  ( K `  a
) )
2018, 19sylib 196 . . . 4  |-  ( (
ph  /\  a  e.  om )  ->  E. b 
b  e.  ( K `
 a ) )
2112, 13, 14, 15, 16, 17isf32lem8 8521 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  om )  ->  ( K `  a )  C_  G
)
2221sselda 3351 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  om )  /\  b  e.  ( K `  a
) )  ->  b  e.  G )
23 eleq1 2498 . . . . . . . . . . . . 13  |-  ( t  =  b  ->  (
t  e.  ( K `
 s )  <->  b  e.  ( K `  s ) ) )
2423anbi2d 703 . . . . . . . . . . . 12  |-  ( t  =  b  ->  (
( s  e.  om  /\  t  e.  ( K `
 s ) )  <-> 
( s  e.  om  /\  b  e.  ( K `
 s ) ) ) )
2524iotabidv 5397 . . . . . . . . . . 11  |-  ( t  =  b  ->  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  =  ( iota s ( s  e.  om  /\  b  e.  ( K `  s
) ) ) )
26 iotaex 5393 . . . . . . . . . . 11  |-  ( iota s ( s  e. 
om  /\  t  e.  ( K `  s ) ) )  e.  _V
2725, 1, 26fvmpt3i 5773 . . . . . . . . . 10  |-  ( b  e.  G  ->  ( L `  b )  =  ( iota s
( s  e.  om  /\  b  e.  ( K `
 s ) ) ) )
2822, 27syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  om )  /\  b  e.  ( K `  a
) )  ->  ( L `  b )  =  ( iota s
( s  e.  om  /\  b  e.  ( K `
 s ) ) ) )
29 simp1r 1013 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om  /\  s  e. 
om )  ->  b  e.  ( K `  a
) )
30 simpl1 991 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  e.  om  /\  s  e. 
om )  /\  s  =/=  a )  ->  ph )
31 simpr 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  a  e.  om  /\  s  e. 
om )  /\  s  =/=  a )  ->  s  =/=  a )
3231necomd 2690 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  e.  om  /\  s  e. 
om )  /\  s  =/=  a )  ->  a  =/=  s )
33 simpl2 992 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  e.  om  /\  s  e. 
om )  /\  s  =/=  a )  ->  a  e.  om )
34 simpl3 993 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  e.  om  /\  s  e. 
om )  /\  s  =/=  a )  ->  s  e.  om )
3512, 13, 14, 15, 16, 17isf32lem7 8520 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  =/=  s )  /\  (
a  e.  om  /\  s  e.  om )
)  ->  ( ( K `  a )  i^i  ( K `  s
) )  =  (/) )
3630, 32, 33, 34, 35syl22anc 1219 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  a  e.  om  /\  s  e. 
om )  /\  s  =/=  a )  ->  (
( K `  a
)  i^i  ( K `  s ) )  =  (/) )
37 disj1 3716 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K `  a
)  i^i  ( K `  s ) )  =  (/) 
<-> 
A. b ( b  e.  ( K `  a )  ->  -.  b  e.  ( K `  s ) ) )
3836, 37sylib 196 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  a  e.  om  /\  s  e. 
om )  /\  s  =/=  a )  ->  A. b
( b  e.  ( K `  a )  ->  -.  b  e.  ( K `  s ) ) )
3938ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  om 
/\  s  e.  om )  ->  ( s  =/=  a  ->  A. b
( b  e.  ( K `  a )  ->  -.  b  e.  ( K `  s ) ) ) )
40 sp 1794 . . . . . . . . . . . . . . . . . . 19  |-  ( A. b ( b  e.  ( K `  a
)  ->  -.  b  e.  ( K `  s
) )  ->  (
b  e.  ( K `
 a )  ->  -.  b  e.  ( K `  s )
) )
4139, 40syl6 33 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  om 
/\  s  e.  om )  ->  ( s  =/=  a  ->  ( b  e.  ( K `  a
)  ->  -.  b  e.  ( K `  s
) ) ) )
4241com23 78 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  om 
/\  s  e.  om )  ->  ( b  e.  ( K `  a
)  ->  ( s  =/=  a  ->  -.  b  e.  ( K `  s
) ) ) )
43423adant1r 1211 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om  /\  s  e. 
om )  ->  (
b  e.  ( K `
 a )  -> 
( s  =/=  a  ->  -.  b  e.  ( K `  s ) ) ) )
4429, 43mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om  /\  s  e. 
om )  ->  (
s  =/=  a  ->  -.  b  e.  ( K `  s )
) )
4544necon4ad 2667 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om  /\  s  e. 
om )  ->  (
b  e.  ( K `
 s )  -> 
s  =  a ) )
46453expia 1189 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om )  ->  (
s  e.  om  ->  ( b  e.  ( K `
 s )  -> 
s  =  a ) ) )
4746impd 431 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om )  ->  (
( s  e.  om  /\  b  e.  ( K `
 s ) )  ->  s  =  a ) )
48 eleq1 2498 . . . . . . . . . . . . . . . 16  |-  ( s  =  a  ->  (
s  e.  om  <->  a  e.  om ) )
49 fveq2 5686 . . . . . . . . . . . . . . . . 17  |-  ( s  =  a  ->  ( K `  s )  =  ( K `  a ) )
5049eleq2d 2505 . . . . . . . . . . . . . . . 16  |-  ( s  =  a  ->  (
b  e.  ( K `
 s )  <->  b  e.  ( K `  a ) ) )
5148, 50anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( s  =  a  ->  (
( s  e.  om  /\  b  e.  ( K `
 s ) )  <-> 
( a  e.  om  /\  b  e.  ( K `
 a ) ) ) )
5251biimprcd 225 . . . . . . . . . . . . . 14  |-  ( ( a  e.  om  /\  b  e.  ( K `  a ) )  -> 
( s  =  a  ->  ( s  e. 
om  /\  b  e.  ( K `  s ) ) ) )
5352ancoms 453 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( K `
 a )  /\  a  e.  om )  ->  ( s  =  a  ->  ( s  e. 
om  /\  b  e.  ( K `  s ) ) ) )
5453adantll 713 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om )  ->  (
s  =  a  -> 
( s  e.  om  /\  b  e.  ( K `
 s ) ) ) )
5547, 54impbid 191 . . . . . . . . . . 11  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om )  ->  (
( s  e.  om  /\  b  e.  ( K `
 s ) )  <-> 
s  =  a ) )
5655iota5 5396 . . . . . . . . . 10  |-  ( ( ( ph  /\  b  e.  ( K `  a
) )  /\  a  e.  om )  ->  ( iota s ( s  e. 
om  /\  b  e.  ( K `  s ) ) )  =  a )
5756an32s 802 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  om )  /\  b  e.  ( K `  a
) )  ->  ( iota s ( s  e. 
om  /\  b  e.  ( K `  s ) ) )  =  a )
5828, 57eqtr2d 2471 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  om )  /\  b  e.  ( K `  a
) )  ->  a  =  ( L `  b ) )
5922, 58jca 532 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  om )  /\  b  e.  ( K `  a
) )  ->  (
b  e.  G  /\  a  =  ( L `  b ) ) )
6059ex 434 . . . . . 6  |-  ( (
ph  /\  a  e.  om )  ->  ( b  e.  ( K `  a
)  ->  ( b  e.  G  /\  a  =  ( L `  b ) ) ) )
6160eximdv 1676 . . . . 5  |-  ( (
ph  /\  a  e.  om )  ->  ( E. b  b  e.  ( K `  a )  ->  E. b ( b  e.  G  /\  a  =  ( L `  b ) ) ) )
62 df-rex 2716 . . . . 5  |-  ( E. b  e.  G  a  =  ( L `  b )  <->  E. b
( b  e.  G  /\  a  =  ( L `  b )
) )
6361, 62syl6ibr 227 . . . 4  |-  ( (
ph  /\  a  e.  om )  ->  ( E. b  b  e.  ( K `  a )  ->  E. b  e.  G  a  =  ( L `  b ) ) )
6420, 63mpd 15 . . 3  |-  ( (
ph  /\  a  e.  om )  ->  E. b  e.  G  a  =  ( L `  b ) )
6564ralrimiva 2794 . 2  |-  ( ph  ->  A. a  e.  om  E. b  e.  G  a  =  ( L `  b ) )
66 dffo3 5853 . 2  |-  ( L : G -onto-> om  <->  ( L : G --> om  /\  A. a  e.  om  E. b  e.  G  a  =  ( L `  b ) ) )
6711, 65, 66sylanbrc 664 1  |-  ( ph  ->  L : G -onto-> om )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   E!weu 2252   {cab 2424    =/= wne 2601   A.wral 2710   E.wrex 2711   {crab 2714    \ cdif 3320    i^i cin 3322    C_ wss 3323    C. wpss 3324   (/)c0 3632   ~Pcpw 3855   |^|cint 4123   class class class wbr 4287    e. cmpt 4345   suc csuc 4716   ran crn 4836    o. ccom 4839   iotacio 5374   -->wf 5409   -onto->wfo 5411   ` cfv 5413   iota_crio 6046   omcom 6471    ~~ cen 7299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-om 6472  df-recs 6824  df-1o 6912  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-card 8101
This theorem is referenced by:  isf32lem10  8523
  Copyright terms: Public domain W3C validator