Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  irradd Structured version   Visualization version   GIF version

 Description: The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
irradd ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ))

StepHypRef Expression
1 eldif 3550 . . 3 (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ))
2 qre 11669 . . . . . 6 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
3 readdcl 9898 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
42, 3sylan2 490 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℝ)
54adantlr 747 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℝ)
6 qsubcl 11683 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ)
76expcom 450 . . . . . . . . . 10 (𝐵 ∈ ℚ → ((𝐴 + 𝐵) ∈ ℚ → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ))
87adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℚ → ((𝐴 + 𝐵) − 𝐵) ∈ ℚ))
9 recn 9905 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 qcn 11678 . . . . . . . . . . 11 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
11 pncan 10166 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
129, 10, 11syl2an 493 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
1312eleq1d 2672 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) − 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ))
148, 13sylibd 228 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℚ → 𝐴 ∈ ℚ))
1514con3d 147 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ))
1615ex 449 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℚ → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ)))
1716com23 84 . . . . 5 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → (𝐵 ∈ ℚ → ¬ (𝐴 + 𝐵) ∈ ℚ)))
1817imp31 447 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → ¬ (𝐴 + 𝐵) ∈ ℚ)
195, 18jca 553 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ))
201, 19sylanb 488 . 2 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ))
21 eldif 3550 . 2 ((𝐴 + 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ ¬ (𝐴 + 𝐵) ∈ ℚ))
2220, 21sylibr 223 1 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537  (class class class)co 6549  ℂcc 9813  ℝcr 9814   + caddc 9818   − cmin 10145  ℚcq 11664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-q 11665 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator