MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inttsk Structured version   Visualization version   GIF version

Theorem inttsk 9475
Description: The intersection of a collection of Tarski classes is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
inttsk ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Tarski)

Proof of Theorem inttsk
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . . . . . . 8 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝐴 ⊆ Tarski)
21sselda 3568 . . . . . . 7 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝑡 ∈ Tarski)
3 elinti 4420 . . . . . . . . 9 (𝑧 𝐴 → (𝑡𝐴𝑧𝑡))
43imp 444 . . . . . . . 8 ((𝑧 𝐴𝑡𝐴) → 𝑧𝑡)
54adantll 746 . . . . . . 7 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝑧𝑡)
6 tskpwss 9453 . . . . . . 7 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → 𝒫 𝑧𝑡)
72, 5, 6syl2anc 691 . . . . . 6 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝒫 𝑧𝑡)
87ralrimiva 2949 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → ∀𝑡𝐴 𝒫 𝑧𝑡)
9 ssint 4428 . . . . 5 (𝒫 𝑧 𝐴 ↔ ∀𝑡𝐴 𝒫 𝑧𝑡)
108, 9sylibr 223 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝒫 𝑧 𝐴)
11 tskpw 9454 . . . . . . 7 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → 𝒫 𝑧𝑡)
122, 5, 11syl2anc 691 . . . . . 6 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝒫 𝑧𝑡)
1312ralrimiva 2949 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → ∀𝑡𝐴 𝒫 𝑧𝑡)
14 vpwex 4775 . . . . . 6 𝒫 𝑧 ∈ V
1514elint2 4417 . . . . 5 (𝒫 𝑧 𝐴 ↔ ∀𝑡𝐴 𝒫 𝑧𝑡)
1613, 15sylibr 223 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝒫 𝑧 𝐴)
1710, 16jca 553 . . 3 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴))
1817ralrimiva 2949 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴))
19 elpwi 4117 . . . 4 (𝑧 ∈ 𝒫 𝐴𝑧 𝐴)
20 rexnal 2978 . . . . . . . 8 (∃𝑡𝐴 ¬ 𝑧𝑡 ↔ ¬ ∀𝑡𝐴 𝑧𝑡)
21 simpr 476 . . . . . . . . . . . . 13 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
22 intex 4747 . . . . . . . . . . . . 13 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
2321, 22sylib 207 . . . . . . . . . . . 12 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
2423ad2antrr 758 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴 ∈ V)
25 simplr 788 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
26 ssdomg 7887 . . . . . . . . . . 11 ( 𝐴 ∈ V → (𝑧 𝐴𝑧 𝐴))
2724, 25, 26sylc 63 . . . . . . . . . 10 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
28 vex 3176 . . . . . . . . . . . 12 𝑡 ∈ V
29 intss1 4427 . . . . . . . . . . . . 13 (𝑡𝐴 𝐴𝑡)
3029ad2antrl 760 . . . . . . . . . . . 12 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑡)
31 ssdomg 7887 . . . . . . . . . . . 12 (𝑡 ∈ V → ( 𝐴𝑡 𝐴𝑡))
3228, 30, 31mpsyl 66 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑡)
33 simprr 792 . . . . . . . . . . . . 13 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → ¬ 𝑧𝑡)
34 simplll 794 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴 ⊆ Tarski)
35 simprl 790 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡𝐴)
3634, 35sseldd 3569 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡 ∈ Tarski)
3725, 30sstrd 3578 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧𝑡)
38 tsken 9455 . . . . . . . . . . . . . . 15 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → (𝑧𝑡𝑧𝑡))
3936, 37, 38syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → (𝑧𝑡𝑧𝑡))
4039ord 391 . . . . . . . . . . . . 13 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → (¬ 𝑧𝑡𝑧𝑡))
4133, 40mt3d 139 . . . . . . . . . . . 12 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧𝑡)
4241ensymd 7893 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡𝑧)
43 domentr 7901 . . . . . . . . . . 11 (( 𝐴𝑡𝑡𝑧) → 𝐴𝑧)
4432, 42, 43syl2anc 691 . . . . . . . . . 10 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑧)
45 sbth 7965 . . . . . . . . . 10 ((𝑧 𝐴 𝐴𝑧) → 𝑧 𝐴)
4627, 44, 45syl2anc 691 . . . . . . . . 9 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
4746rexlimdvaa 3014 . . . . . . . 8 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (∃𝑡𝐴 ¬ 𝑧𝑡𝑧 𝐴))
4820, 47syl5bir 232 . . . . . . 7 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ ∀𝑡𝐴 𝑧𝑡𝑧 𝐴))
4948con1d 138 . . . . . 6 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ 𝑧 𝐴 → ∀𝑡𝐴 𝑧𝑡))
50 vex 3176 . . . . . . 7 𝑧 ∈ V
5150elint2 4417 . . . . . 6 (𝑧 𝐴 ↔ ∀𝑡𝐴 𝑧𝑡)
5249, 51syl6ibr 241 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ 𝑧 𝐴𝑧 𝐴))
5352orrd 392 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (𝑧 𝐴𝑧 𝐴))
5419, 53sylan2 490 . . 3 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧 𝐴𝑧 𝐴))
5554ralrimiva 2949 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))
56 eltsk2g 9452 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Tarski ↔ (∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴) ∧ ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))))
5723, 56syl 17 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ( 𝐴 ∈ Tarski ↔ (∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴) ∧ ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))))
5818, 55, 57mpbir2and 959 1 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Tarski)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cint 4410   class class class wbr 4583  cen 7838  cdom 7839  Tarskictsk 9449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-er 7629  df-en 7842  df-dom 7843  df-tsk 9450
This theorem is referenced by:  tskmcl  9542
  Copyright terms: Public domain W3C validator