MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmcl Structured version   Visualization version   GIF version

Theorem tskmcl 9542
Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
tskmcl (tarskiMap‘𝐴) ∈ Tarski

Proof of Theorem tskmcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tskmval 9540 . . 3 (𝐴 ∈ V → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
2 ssrab2 3650 . . . 4 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ⊆ Tarski
3 id 22 . . . . . . 7 (𝐴 ∈ V → 𝐴 ∈ V)
4 grothtsk 9536 . . . . . . 7 Tarski = V
53, 4syl6eleqr 2699 . . . . . 6 (𝐴 ∈ V → 𝐴 Tarski)
6 eluni2 4376 . . . . . 6 (𝐴 Tarski ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
75, 6sylib 207 . . . . 5 (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴𝑥)
8 rabn0 3912 . . . . 5 ({𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
97, 8sylibr 223 . . . 4 (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅)
10 inttsk 9475 . . . 4 (({𝑥 ∈ Tarski ∣ 𝐴𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴𝑥} ≠ ∅) → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ Tarski)
112, 9, 10sylancr 694 . . 3 (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ Tarski)
121, 11eqeltrd 2688 . 2 (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski)
13 fvprc 6097 . . 3 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅)
14 0tsk 9456 . . 3 ∅ ∈ Tarski
1513, 14syl6eqel 2696 . 2 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski)
1612, 15pm2.61i 175 1 (tarskiMap‘𝐴) ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874   cuni 4372   cint 4410  cfv 5804  Tarskictsk 9449  tarskiMapctskm 9538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-groth 9524
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-tsk 9450  df-tskm 9539
This theorem is referenced by:  eltskm  9544
  Copyright terms: Public domain W3C validator