MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0tsk Structured version   Visualization version   GIF version

Theorem 0tsk 9456
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
0tsk ∅ ∈ Tarski

Proof of Theorem 0tsk
StepHypRef Expression
1 ral0 4028 . 2 𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅)
2 elsni 4142 . . . . 5 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0ex 4718 . . . . . . . 8 ∅ ∈ V
43enref 7874 . . . . . . 7 ∅ ≈ ∅
5 breq1 4586 . . . . . . 7 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
64, 5mpbiri 247 . . . . . 6 (𝑥 = ∅ → 𝑥 ≈ ∅)
76orcd 406 . . . . 5 (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
82, 7syl 17 . . . 4 (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
9 pw0 4283 . . . 4 𝒫 ∅ = {∅}
108, 9eleq2s 2706 . . 3 (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
1110rgen 2906 . 2 𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)
12 eltsk2g 9452 . . 3 (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))))
133, 12ax-mp 5 . 2 (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))
141, 11, 13mpbir2an 957 1 ∅ ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cen 7838  Tarskictsk 9449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-en 7842  df-tsk 9450
This theorem is referenced by:  r1tskina  9483  grutsk  9523  tskmcl  9542
  Copyright terms: Public domain W3C validator