MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothtsk Structured version   Visualization version   GIF version

Theorem grothtsk 9536
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.)
Assertion
Ref Expression
grothtsk Tarski = V

Proof of Theorem grothtsk
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 9525 . . . . 5 𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))
2 vex 3176 . . . . . . . . 9 𝑥 ∈ V
3 eltskg 9451 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
42, 3ax-mp 5 . . . . . . . 8 (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
54anbi2i 726 . . . . . . 7 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
6 3anass 1035 . . . . . . 7 ((𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
75, 6bitr4i 266 . . . . . 6 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
87exbii 1764 . . . . 5 (∃𝑥(𝑤𝑥𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
91, 8mpbir 220 . . . 4 𝑥(𝑤𝑥𝑥 ∈ Tarski)
10 eluni 4375 . . . 4 (𝑤 Tarski ↔ ∃𝑥(𝑤𝑥𝑥 ∈ Tarski))
119, 10mpbir 220 . . 3 𝑤 Tarski
12 vex 3176 . . 3 𝑤 ∈ V
1311, 122th 253 . 2 (𝑤 Tarski ↔ 𝑤 ∈ V)
1413eqriv 2607 1 Tarski = V
Colors of variables: wff setvar class
Syntax hints:  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cen 7838  Tarskictsk 9449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-groth 9524
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-tsk 9450
This theorem is referenced by:  inaprc  9537  tskmval  9540  tskmcl  9542
  Copyright terms: Public domain W3C validator