MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsken Structured version   Visualization version   GIF version

Theorem tsken 9455
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsken ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))

Proof of Theorem tsken
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpw2g 4754 . . 3 (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇𝐴𝑇))
21biimpar 501 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴 ∈ 𝒫 𝑇)
3 eltskg 9451 . . . . 5 (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))))
43ibi 255 . . . 4 (𝑇 ∈ Tarski → (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇)))
54simprd 478 . . 3 (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))
6 breq1 4586 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
7 eleq1 2676 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
86, 7orbi12d 742 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑇𝑥𝑇) ↔ (𝐴𝑇𝐴𝑇)))
98rspccva 3281 . . 3 ((∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴𝑇𝐴𝑇))
105, 9sylan 487 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴𝑇𝐴𝑇))
112, 10syldan 486 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cen 7838  Tarskictsk 9449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-tsk 9450
This theorem is referenced by:  tskssel  9458  inttsk  9475  r1tskina  9483  tskuni  9484
  Copyright terms: Public domain W3C validator