Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartf Structured version   Visualization version   GIF version

Theorem iccpartf 39969
Description: The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 39015 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartf (𝜑𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃𝑀)))

Proof of Theorem iccpartf
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . 3 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . 3 (𝜑𝑃 ∈ (RePart‘𝑀))
3 iccpart 39954 . . . 4 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
4 elmapfn 7766 . . . . 5 (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) → 𝑃 Fn (0...𝑀))
54adantr 480 . . . 4 ((𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 Fn (0...𝑀))
63, 5syl6bi 242 . . 3 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → 𝑃 Fn (0...𝑀)))
71, 2, 6sylc 63 . 2 (𝜑𝑃 Fn (0...𝑀))
81, 2iccpartrn 39968 . 2 (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃𝑀)))
9 df-f 5808 . 2 (𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃𝑀)) ↔ (𝑃 Fn (0...𝑀) ∧ ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃𝑀))))
107, 8, 9sylanbrc 695 1 (𝜑𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wral 2896  wss 3540   class class class wbr 4583  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cn 10897  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  RePartciccp 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-icc 12053  df-fz 12198  df-fzo 12335  df-iccp 39952
This theorem is referenced by:  iccpartel  39970
  Copyright terms: Public domain W3C validator