MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hargch Structured version   Visualization version   GIF version

Theorem hargch 9374
Description: If 𝐴 + ≈ 𝒫 𝐴, then 𝐴 is a GCH-set. The much simpler converse to gchhar 9380. (Contributed by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
hargch ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ GCH)

Proof of Theorem hargch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 harcl 8349 . . . . . . . . . . . . . 14 (har‘𝐴) ∈ On
2 sdomdom 7869 . . . . . . . . . . . . . 14 (𝑥 ≺ (har‘𝐴) → 𝑥 ≼ (har‘𝐴))
3 ondomen 8743 . . . . . . . . . . . . . 14 (((har‘𝐴) ∈ On ∧ 𝑥 ≼ (har‘𝐴)) → 𝑥 ∈ dom card)
41, 2, 3sylancr 694 . . . . . . . . . . . . 13 (𝑥 ≺ (har‘𝐴) → 𝑥 ∈ dom card)
5 onenon 8658 . . . . . . . . . . . . . 14 ((har‘𝐴) ∈ On → (har‘𝐴) ∈ dom card)
61, 5ax-mp 5 . . . . . . . . . . . . 13 (har‘𝐴) ∈ dom card
7 cardsdom2 8697 . . . . . . . . . . . . 13 ((𝑥 ∈ dom card ∧ (har‘𝐴) ∈ dom card) → ((card‘𝑥) ∈ (card‘(har‘𝐴)) ↔ 𝑥 ≺ (har‘𝐴)))
84, 6, 7sylancl 693 . . . . . . . . . . . 12 (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ∈ (card‘(har‘𝐴)) ↔ 𝑥 ≺ (har‘𝐴)))
98ibir 256 . . . . . . . . . . 11 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈ (card‘(har‘𝐴)))
10 harcard 8687 . . . . . . . . . . 11 (card‘(har‘𝐴)) = (har‘𝐴)
119, 10syl6eleq 2698 . . . . . . . . . 10 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈ (har‘𝐴))
12 elharval 8351 . . . . . . . . . . 11 ((card‘𝑥) ∈ (har‘𝐴) ↔ ((card‘𝑥) ∈ On ∧ (card‘𝑥) ≼ 𝐴))
1312simprbi 479 . . . . . . . . . 10 ((card‘𝑥) ∈ (har‘𝐴) → (card‘𝑥) ≼ 𝐴)
1411, 13syl 17 . . . . . . . . 9 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ≼ 𝐴)
15 cardid2 8662 . . . . . . . . . 10 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
16 domen1 7987 . . . . . . . . . 10 ((card‘𝑥) ≈ 𝑥 → ((card‘𝑥) ≼ 𝐴𝑥𝐴))
174, 15, 163syl 18 . . . . . . . . 9 (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ≼ 𝐴𝑥𝐴))
1814, 17mpbid 221 . . . . . . . 8 (𝑥 ≺ (har‘𝐴) → 𝑥𝐴)
19 domnsym 7971 . . . . . . . 8 (𝑥𝐴 → ¬ 𝐴𝑥)
2018, 19syl 17 . . . . . . 7 (𝑥 ≺ (har‘𝐴) → ¬ 𝐴𝑥)
2120con2i 133 . . . . . 6 (𝐴𝑥 → ¬ 𝑥 ≺ (har‘𝐴))
22 sdomen2 7990 . . . . . . 7 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝑥 ≺ (har‘𝐴) ↔ 𝑥 ≺ 𝒫 𝐴))
2322notbid 307 . . . . . 6 ((har‘𝐴) ≈ 𝒫 𝐴 → (¬ 𝑥 ≺ (har‘𝐴) ↔ ¬ 𝑥 ≺ 𝒫 𝐴))
2421, 23syl5ib 233 . . . . 5 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴))
25 imnan 437 . . . . 5 ((𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2624, 25sylib 207 . . . 4 ((har‘𝐴) ≈ 𝒫 𝐴 → ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2726alrimiv 1842 . . 3 ((har‘𝐴) ≈ 𝒫 𝐴 → ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2827olcd 407 . 2 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
29 relen 7846 . . . . 5 Rel ≈
3029brrelex2i 5083 . . . 4 ((har‘𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
31 pwexb 6867 . . . 4 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
3230, 31sylibr 223 . . 3 ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ V)
33 elgch 9323 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
3432, 33syl 17 . 2 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
3528, 34mpbird 246 1 ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ GCH)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wal 1473  wcel 1977  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038  Oncon0 5640  cfv 5804  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  harchar 8344  cardccrd 8644  GCHcgch 9321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-wrecs 7294  df-recs 7355  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-oi 8298  df-har 8346  df-card 8648  df-gch 9322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator