MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hargch Structured version   Unicode version

Theorem hargch 9049
Description: If  A  +  ~~  ~P A, then  A is a GCH-set. The much simpler converse to gchhar 9055. (Contributed by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
hargch  |-  ( (har
`  A )  ~~  ~P A  ->  A  e. GCH )

Proof of Theorem hargch
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 harcl 7985 . . . . . . . . . . . . . 14  |-  (har `  A )  e.  On
2 sdomdom 7541 . . . . . . . . . . . . . 14  |-  ( x 
~<  (har `  A )  ->  x  ~<_  (har `  A
) )
3 ondomen 8416 . . . . . . . . . . . . . 14  |-  ( ( (har `  A )  e.  On  /\  x  ~<_  (har
`  A ) )  ->  x  e.  dom  card )
41, 2, 3sylancr 663 . . . . . . . . . . . . 13  |-  ( x 
~<  (har `  A )  ->  x  e.  dom  card )
5 onenon 8328 . . . . . . . . . . . . . 14  |-  ( (har
`  A )  e.  On  ->  (har `  A
)  e.  dom  card )
61, 5ax-mp 5 . . . . . . . . . . . . 13  |-  (har `  A )  e.  dom  card
7 cardsdom2 8367 . . . . . . . . . . . . 13  |-  ( ( x  e.  dom  card  /\  (har `  A )  e.  dom  card )  ->  (
( card `  x )  e.  ( card `  (har `  A ) )  <->  x  ~<  (har
`  A ) ) )
84, 6, 7sylancl 662 . . . . . . . . . . . 12  |-  ( x 
~<  (har `  A )  ->  ( ( card `  x
)  e.  ( card `  (har `  A )
)  <->  x  ~<  (har `  A ) ) )
98ibir 242 . . . . . . . . . . 11  |-  ( x 
~<  (har `  A )  ->  ( card `  x
)  e.  ( card `  (har `  A )
) )
10 harcard 8357 . . . . . . . . . . 11  |-  ( card `  (har `  A )
)  =  (har `  A )
119, 10syl6eleq 2539 . . . . . . . . . 10  |-  ( x 
~<  (har `  A )  ->  ( card `  x
)  e.  (har `  A ) )
12 elharval 7987 . . . . . . . . . . 11  |-  ( (
card `  x )  e.  (har `  A )  <->  ( ( card `  x
)  e.  On  /\  ( card `  x )  ~<_  A ) )
1312simprbi 464 . . . . . . . . . 10  |-  ( (
card `  x )  e.  (har `  A )  ->  ( card `  x
)  ~<_  A )
1411, 13syl 16 . . . . . . . . 9  |-  ( x 
~<  (har `  A )  ->  ( card `  x
)  ~<_  A )
15 cardid2 8332 . . . . . . . . . 10  |-  ( x  e.  dom  card  ->  (
card `  x )  ~~  x )
16 domen1 7657 . . . . . . . . . 10  |-  ( (
card `  x )  ~~  x  ->  ( (
card `  x )  ~<_  A 
<->  x  ~<_  A ) )
174, 15, 163syl 20 . . . . . . . . 9  |-  ( x 
~<  (har `  A )  ->  ( ( card `  x
)  ~<_  A  <->  x  ~<_  A ) )
1814, 17mpbid 210 . . . . . . . 8  |-  ( x 
~<  (har `  A )  ->  x  ~<_  A )
19 domnsym 7641 . . . . . . . 8  |-  ( x  ~<_  A  ->  -.  A  ~<  x )
2018, 19syl 16 . . . . . . 7  |-  ( x 
~<  (har `  A )  ->  -.  A  ~<  x
)
2120con2i 120 . . . . . 6  |-  ( A 
~<  x  ->  -.  x  ~<  (har `  A )
)
22 sdomen2 7660 . . . . . . 7  |-  ( (har
`  A )  ~~  ~P A  ->  ( x 
~<  (har `  A )  <->  x 
~<  ~P A ) )
2322notbid 294 . . . . . 6  |-  ( (har
`  A )  ~~  ~P A  ->  ( -.  x  ~<  (har `  A
)  <->  -.  x  ~<  ~P A ) )
2421, 23syl5ib 219 . . . . 5  |-  ( (har
`  A )  ~~  ~P A  ->  ( A 
~<  x  ->  -.  x  ~<  ~P A ) )
25 imnan 422 . . . . 5  |-  ( ( A  ~<  x  ->  -.  x  ~<  ~P A
)  <->  -.  ( A  ~<  x  /\  x  ~<  ~P A ) )
2624, 25sylib 196 . . . 4  |-  ( (har
`  A )  ~~  ~P A  ->  -.  ( A  ~<  x  /\  x  ~<  ~P A ) )
2726alrimiv 1704 . . 3  |-  ( (har
`  A )  ~~  ~P A  ->  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) )
2827olcd 393 . 2  |-  ( (har
`  A )  ~~  ~P A  ->  ( A  e.  Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
29 relen 7519 . . . . 5  |-  Rel  ~~
3029brrelex2i 5027 . . . 4  |-  ( (har
`  A )  ~~  ~P A  ->  ~P A  e.  _V )
31 pwexb 6592 . . . 4  |-  ( A  e.  _V  <->  ~P A  e.  _V )
3230, 31sylibr 212 . . 3  |-  ( (har
`  A )  ~~  ~P A  ->  A  e. 
_V )
33 elgch 8998 . . 3  |-  ( A  e.  _V  ->  ( A  e. GCH  <->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
3432, 33syl 16 . 2  |-  ( (har
`  A )  ~~  ~P A  ->  ( A  e. GCH 
<->  ( A  e.  Fin  \/ 
A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A ) ) ) )
3528, 34mpbird 232 1  |-  ( (har
`  A )  ~~  ~P A  ->  A  e. GCH )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1379    e. wcel 1802   _Vcvv 3093   ~Pcpw 3993   class class class wbr 4433   Oncon0 4864   dom cdm 4985   ` cfv 5574    ~~ cen 7511    ~<_ cdom 7512    ~< csdm 7513   Fincfn 7514  harchar 7980   cardccrd 8314  GCHcgch 8996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-recs 7040  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-oi 7933  df-har 7982  df-card 8318  df-gch 8997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator