Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. 2
⊢ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹 “ 𝑏)) = (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹 “ 𝑏)) |
2 | | imassrn 5396 |
. . . . . 6
⊢ (𝐹 “ 𝑏) ⊆ ran 𝐹 |
3 | | f1ofo 6057 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
4 | | forn 6031 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 = 𝐵) |
6 | 2, 5 | syl5sseq 3616 |
. . . . 5
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 “ 𝑏) ⊆ 𝐵) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ 𝑏) ⊆ 𝐵) |
8 | | inss2 3796 |
. . . . . . 7
⊢
(𝒫 𝐴 ∩
Fin) ⊆ Fin |
9 | | simpr 476 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) |
10 | 8, 9 | sseldi 3566 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ∈ Fin) |
11 | | f1ofun 6052 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹) |
13 | | inss1 3795 |
. . . . . . . . . . 11
⊢
(𝒫 𝐴 ∩
Fin) ⊆ 𝒫 𝐴 |
14 | 13 | sseli 3564 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) → 𝑏 ∈ 𝒫 𝐴) |
15 | | elpwi 4117 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) |
16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) → 𝑏 ⊆ 𝐴) |
17 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ⊆ 𝐴) |
18 | | f1odm 6054 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) |
19 | 18 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → dom 𝐹 = 𝐴) |
20 | 17, 19 | sseqtr4d 3605 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ⊆ dom 𝐹) |
21 | | fores 6037 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑏 ⊆ dom 𝐹) → (𝐹 ↾ 𝑏):𝑏–onto→(𝐹 “ 𝑏)) |
22 | 12, 20, 21 | syl2anc 691 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑏):𝑏–onto→(𝐹 “ 𝑏)) |
23 | | fofi 8135 |
. . . . . 6
⊢ ((𝑏 ∈ Fin ∧ (𝐹 ↾ 𝑏):𝑏–onto→(𝐹 “ 𝑏)) → (𝐹 “ 𝑏) ∈ Fin) |
24 | 10, 22, 23 | syl2anc 691 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ 𝑏) ∈ Fin) |
25 | | elpwg 4116 |
. . . . 5
⊢ ((𝐹 “ 𝑏) ∈ Fin → ((𝐹 “ 𝑏) ∈ 𝒫 𝐵 ↔ (𝐹 “ 𝑏) ⊆ 𝐵)) |
26 | 24, 25 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 “ 𝑏) ∈ 𝒫 𝐵 ↔ (𝐹 “ 𝑏) ⊆ 𝐵)) |
27 | 7, 26 | mpbird 246 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ 𝑏) ∈ 𝒫 𝐵) |
28 | 27, 24 | elind 3760 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ 𝑏) ∈ (𝒫 𝐵 ∩ Fin)) |
29 | | imassrn 5396 |
. . . . . 6
⊢ (◡𝐹 “ 𝑎) ⊆ ran ◡𝐹 |
30 | | dfdm4 5238 |
. . . . . . 7
⊢ dom 𝐹 = ran ◡𝐹 |
31 | 30, 18 | syl5eqr 2658 |
. . . . . 6
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran ◡𝐹 = 𝐴) |
32 | 29, 31 | syl5sseq 3616 |
. . . . 5
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
33 | 32 | adantr 480 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
34 | | inss2 3796 |
. . . . . . 7
⊢
(𝒫 𝐵 ∩
Fin) ⊆ Fin |
35 | | simpr 476 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) |
36 | 34, 35 | sseldi 3566 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ Fin) |
37 | | dff1o3 6056 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
38 | 37 | simprbi 479 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun ◡𝐹) |
39 | 38 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → Fun ◡𝐹) |
40 | | inss1 3795 |
. . . . . . . . . . 11
⊢
(𝒫 𝐵 ∩
Fin) ⊆ 𝒫 𝐵 |
41 | 40 | sseli 3564 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝒫 𝐵 ∩ Fin) → 𝑎 ∈ 𝒫 𝐵) |
42 | 41 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ 𝒫 𝐵) |
43 | | elpwi 4117 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ⊆ 𝐵) |
45 | | f1ocnv 6062 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
46 | 45 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → ◡𝐹:𝐵–1-1-onto→𝐴) |
47 | | f1odm 6054 |
. . . . . . . . 9
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → dom ◡𝐹 = 𝐵) |
48 | 46, 47 | syl 17 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → dom ◡𝐹 = 𝐵) |
49 | 44, 48 | sseqtr4d 3605 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ⊆ dom ◡𝐹) |
50 | | fores 6037 |
. . . . . . 7
⊢ ((Fun
◡𝐹 ∧ 𝑎 ⊆ dom ◡𝐹) → (◡𝐹 ↾ 𝑎):𝑎–onto→(◡𝐹 “ 𝑎)) |
51 | 39, 49, 50 | syl2anc 691 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (◡𝐹 ↾ 𝑎):𝑎–onto→(◡𝐹 “ 𝑎)) |
52 | | fofi 8135 |
. . . . . 6
⊢ ((𝑎 ∈ Fin ∧ (◡𝐹 ↾ 𝑎):𝑎–onto→(◡𝐹 “ 𝑎)) → (◡𝐹 “ 𝑎) ∈ Fin) |
53 | 36, 51, 52 | syl2anc 691 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (◡𝐹 “ 𝑎) ∈ Fin) |
54 | | elpwg 4116 |
. . . . 5
⊢ ((◡𝐹 “ 𝑎) ∈ Fin → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
55 | 53, 54 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
56 | 33, 55 | mpbird 246 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) |
57 | 56, 53 | elind 3760 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (◡𝐹 “ 𝑎) ∈ (𝒫 𝐴 ∩ Fin)) |
58 | 14, 41 | anim12i 588 |
. . 3
⊢ ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) |
59 | 43 | adantl 481 |
. . . . . . 7
⊢ ((𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑎 ⊆ 𝐵) |
60 | | foimacnv 6067 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
61 | 3, 59, 60 | syl2an 493 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
62 | 61 | eqcomd 2616 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (◡𝐹 “ 𝑎))) |
63 | | imaeq2 5381 |
. . . . . 6
⊢ (𝑏 = (◡𝐹 “ 𝑎) → (𝐹 “ 𝑏) = (𝐹 “ (◡𝐹 “ 𝑎))) |
64 | 63 | eqeq2d 2620 |
. . . . 5
⊢ (𝑏 = (◡𝐹 “ 𝑎) → (𝑎 = (𝐹 “ 𝑏) ↔ 𝑎 = (𝐹 “ (◡𝐹 “ 𝑎)))) |
65 | 62, 64 | syl5ibrcom 236 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (◡𝐹 “ 𝑎) → 𝑎 = (𝐹 “ 𝑏))) |
66 | | f1of1 6049 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
67 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑏 ⊆ 𝐴) |
68 | | f1imacnv 6066 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑏 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝑏)) = 𝑏) |
69 | 66, 67, 68 | syl2an 493 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (◡𝐹 “ (𝐹 “ 𝑏)) = 𝑏) |
70 | 69 | eqcomd 2616 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (◡𝐹 “ (𝐹 “ 𝑏))) |
71 | | imaeq2 5381 |
. . . . . 6
⊢ (𝑎 = (𝐹 “ 𝑏) → (◡𝐹 “ 𝑎) = (◡𝐹 “ (𝐹 “ 𝑏))) |
72 | 71 | eqeq2d 2620 |
. . . . 5
⊢ (𝑎 = (𝐹 “ 𝑏) → (𝑏 = (◡𝐹 “ 𝑎) ↔ 𝑏 = (◡𝐹 “ (𝐹 “ 𝑏)))) |
73 | 70, 72 | syl5ibrcom 236 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹 “ 𝑏) → 𝑏 = (◡𝐹 “ 𝑎))) |
74 | 65, 73 | impbid 201 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (◡𝐹 “ 𝑎) ↔ 𝑎 = (𝐹 “ 𝑏))) |
75 | 58, 74 | sylan2 490 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑏 = (◡𝐹 “ 𝑎) ↔ 𝑎 = (𝐹 “ 𝑏))) |
76 | 1, 28, 57, 75 | f1o2d 6785 |
1
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹 “ 𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin)) |