MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opwfi Structured version   Unicode version

Theorem f1opwfi 7824
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
f1opwfi  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) ) : ( ~P A  i^i  Fin ) -1-1-onto-> ( ~P B  i^i  Fin ) )
Distinct variable groups:    A, b    B, b    F, b

Proof of Theorem f1opwfi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . 2  |-  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F
" b ) )  =  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) )
2 imassrn 5348 . . . . . 6  |-  ( F
" b )  C_  ran  F
3 f1ofo 5823 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
4 forn 5798 . . . . . . 7  |-  ( F : A -onto-> B  ->  ran  F  =  B )
53, 4syl 16 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  ran  F  =  B )
62, 5syl5sseq 3552 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  ( F " b )  C_  B
)
76adantr 465 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  C_  B
)
8 inss2 3719 . . . . . . 7  |-  ( ~P A  i^i  Fin )  C_ 
Fin
9 simpr 461 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  e.  ( ~P A  i^i  Fin ) )
108, 9sseldi 3502 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  e.  Fin )
11 f1ofun 5818 . . . . . . . 8  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
1211adantr 465 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  Fun  F )
13 inss1 3718 . . . . . . . . . . 11  |-  ( ~P A  i^i  Fin )  C_ 
~P A
1413sseli 3500 . . . . . . . . . 10  |-  ( b  e.  ( ~P A  i^i  Fin )  ->  b  e.  ~P A )
15 elpwi 4019 . . . . . . . . . 10  |-  ( b  e.  ~P A  -> 
b  C_  A )
1614, 15syl 16 . . . . . . . . 9  |-  ( b  e.  ( ~P A  i^i  Fin )  ->  b  C_  A )
1716adantl 466 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  C_  A
)
18 f1odm 5820 . . . . . . . . 9  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
1918adantr 465 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  dom  F  =  A )
2017, 19sseqtr4d 3541 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  C_  dom  F )
21 fores 5804 . . . . . . 7  |-  ( ( Fun  F  /\  b  C_ 
dom  F )  -> 
( F  |`  b
) : b -onto-> ( F " b ) )
2212, 20, 21syl2anc 661 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  b ) : b
-onto-> ( F " b
) )
23 fofi 7806 . . . . . 6  |-  ( ( b  e.  Fin  /\  ( F  |`  b ) : b -onto-> ( F
" b ) )  ->  ( F "
b )  e.  Fin )
2410, 22, 23syl2anc 661 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  Fin )
25 elpwg 4018 . . . . 5  |-  ( ( F " b )  e.  Fin  ->  (
( F " b
)  e.  ~P B  <->  ( F " b ) 
C_  B ) )
2624, 25syl 16 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( ( F
" b )  e. 
~P B  <->  ( F " b )  C_  B
) )
277, 26mpbird 232 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  ~P B )
2827, 24elind 3688 . 2  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  ( ~P B  i^i  Fin ) )
29 imassrn 5348 . . . . . 6  |-  ( `' F " a ) 
C_  ran  `' F
30 dfdm4 5195 . . . . . . 7  |-  dom  F  =  ran  `' F
3130, 18syl5eqr 2522 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  ran  `' F  =  A )
3229, 31syl5sseq 3552 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  ( `' F " a )  C_  A )
3332adantr 465 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  C_  A
)
34 inss2 3719 . . . . . . 7  |-  ( ~P B  i^i  Fin )  C_ 
Fin
35 simpr 461 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  ( ~P B  i^i  Fin ) )
3634, 35sseldi 3502 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  Fin )
37 dff1o3 5822 . . . . . . . . 9  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
3837simprbi 464 . . . . . . . 8  |-  ( F : A -1-1-onto-> B  ->  Fun  `' F
)
3938adantr 465 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  Fun  `' F
)
40 inss1 3718 . . . . . . . . . . 11  |-  ( ~P B  i^i  Fin )  C_ 
~P B
4140sseli 3500 . . . . . . . . . 10  |-  ( a  e.  ( ~P B  i^i  Fin )  ->  a  e.  ~P B )
4241adantl 466 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  ~P B )
43 elpwi 4019 . . . . . . . . 9  |-  ( a  e.  ~P B  -> 
a  C_  B )
4442, 43syl 16 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  C_  B
)
45 f1ocnv 5828 . . . . . . . . . 10  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
4645adantr 465 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  `' F : B
-1-1-onto-> A )
47 f1odm 5820 . . . . . . . . 9  |-  ( `' F : B -1-1-onto-> A  ->  dom  `' F  =  B
)
4846, 47syl 16 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  dom  `' F  =  B )
4944, 48sseqtr4d 3541 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  C_  dom  `' F )
50 fores 5804 . . . . . . 7  |-  ( ( Fun  `' F  /\  a  C_  dom  `' F
)  ->  ( `' F  |`  a ) : a -onto-> ( `' F " a ) )
5139, 49, 50syl2anc 661 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F  |`  a ) : a
-onto-> ( `' F "
a ) )
52 fofi 7806 . . . . . 6  |-  ( ( a  e.  Fin  /\  ( `' F  |`  a ) : a -onto-> ( `' F " a ) )  ->  ( `' F " a )  e. 
Fin )
5336, 51, 52syl2anc 661 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  Fin )
54 elpwg 4018 . . . . 5  |-  ( ( `' F " a )  e.  Fin  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
5553, 54syl 16 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( ( `' F " a )  e.  ~P A  <->  ( `' F " a )  C_  A ) )
5633, 55mpbird 232 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  ~P A )
5756, 53elind 3688 . 2  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  ( ~P A  i^i  Fin ) )
5814, 41anim12i 566 . . 3  |-  ( ( b  e.  ( ~P A  i^i  Fin )  /\  a  e.  ( ~P B  i^i  Fin )
)  ->  ( b  e.  ~P A  /\  a  e.  ~P B ) )
5943adantl 466 . . . . . . 7  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  a  C_  B )
60 foimacnv 5833 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
613, 59, 60syl2an 477 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( F " ( `' F " a ) )  =  a )
6261eqcomd 2475 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
a  =  ( F
" ( `' F " a ) ) )
63 imaeq2 5333 . . . . . 6  |-  ( b  =  ( `' F " a )  ->  ( F " b )  =  ( F " ( `' F " a ) ) )
6463eqeq2d 2481 . . . . 5  |-  ( b  =  ( `' F " a )  ->  (
a  =  ( F
" b )  <->  a  =  ( F " ( `' F " a ) ) ) )
6562, 64syl5ibrcom 222 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( b  =  ( `' F " a )  ->  a  =  ( F " b ) ) )
66 f1of1 5815 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
6715adantr 465 . . . . . . 7  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  b  C_  A )
68 f1imacnv 5832 . . . . . . 7  |-  ( ( F : A -1-1-> B  /\  b  C_  A )  ->  ( `' F " ( F " b
) )  =  b )
6966, 67, 68syl2an 477 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( `' F "
( F " b
) )  =  b )
7069eqcomd 2475 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
b  =  ( `' F " ( F
" b ) ) )
71 imaeq2 5333 . . . . . 6  |-  ( a  =  ( F "
b )  ->  ( `' F " a )  =  ( `' F " ( F " b
) ) )
7271eqeq2d 2481 . . . . 5  |-  ( a  =  ( F "
b )  ->  (
b  =  ( `' F " a )  <-> 
b  =  ( `' F " ( F
" b ) ) ) )
7370, 72syl5ibrcom 222 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( a  =  ( F " b )  ->  b  =  ( `' F " a ) ) )
7465, 73impbid 191 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( b  =  ( `' F " a )  <-> 
a  =  ( F
" b ) ) )
7558, 74sylan2 474 . 2  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ( ~P A  i^i  Fin )  /\  a  e.  ( ~P B  i^i  Fin ) ) )  -> 
( b  =  ( `' F " a )  <-> 
a  =  ( F
" b ) ) )
761, 28, 57, 75f1o2d 6511 1  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) ) : ( ~P A  i^i  Fin ) -1-1-onto-> ( ~P B  i^i  Fin ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    i^i cin 3475    C_ wss 3476   ~Pcpw 4010    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   Fun wfun 5582   -1-1->wf1 5585   -onto->wfo 5586   -1-1-onto->wf1o 5587   Fincfn 7516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-1o 7130  df-er 7311  df-en 7517  df-dom 7518  df-fin 7520
This theorem is referenced by:  fictb  8625  ackbijnn  13603  tsmsf1o  20410  eulerpartgbij  27979
  Copyright terms: Public domain W3C validator