Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemv Structured version   Visualization version   GIF version

Theorem eulerpartlemv 29753
 Description: Lemma for eulerpart 29771. (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypothesis
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
Assertion
Ref Expression
eulerpartlemv (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑓,𝑁,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑃(𝑓)

Proof of Theorem eulerpartlemv
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
21eulerpartleme 29752 . 2 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
3 cnvimass 5404 . . . . . . . . 9 (𝐴 “ ℕ) ⊆ dom 𝐴
4 fdm 5964 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
53, 4syl5sseq 3616 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → (𝐴 “ ℕ) ⊆ ℕ)
6 simpl 472 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
75sselda 3568 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
86, 7ffvelrnd 6268 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
97nnnn0d 11228 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
108, 9nn0mulcld 11233 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1110nn0cnd 11230 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
12 simpr 476 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1312eldifad 3552 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1412eldifbd 3553 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
15 simpl 472 . . . . . . . . . . . . . . 15 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
16 ffn 5958 . . . . . . . . . . . . . . 15 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
17 elpreima 6245 . . . . . . . . . . . . . . 15 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1815, 16, 173syl 18 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1914, 18mtbid 313 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
20 imnan 437 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2119, 20sylibr 223 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2213, 21mpd 15 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2315, 13ffvelrnd 6268 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
24 elnn0 11171 . . . . . . . . . . . 12 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2523, 24sylib 207 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
26 orel1 396 . . . . . . . . . . 11 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
2722, 25, 26sylc 63 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
2827oveq1d 6564 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
2913nncnd 10913 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3029mul02d 10113 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3128, 30eqtrd 2644 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
32 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
3332eqimssi 3622 . . . . . . . . 9 ℕ ⊆ (ℤ‘1)
3433a1i 11 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → ℕ ⊆ (ℤ‘1))
355, 11, 31, 34sumss 14302 . . . . . . 7 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
3635eqcomd 2616 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3736adantr 480 . . . . 5 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3837eqeq1d 2612 . . . 4 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
3938pm5.32i 667 . . 3 (((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
40 df-3an 1033 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
41 df-3an 1033 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
4239, 40, 413bitr4i 291 . 2 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
432, 42bitri 263 1 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   ∖ cdif 3537   ⊆ wss 3540  ◡ccnv 5037  dom cdm 5038   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816   · cmul 9820  ℕcn 10897  ℕ0cn0 11169  ℤ≥cuz 11563  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator