Proof of Theorem eulerpartlemgf
Step | Hyp | Ref
| Expression |
1 | | eulerpart.p |
. . . . . . 7
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑𝑚 ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
2 | | eulerpart.o |
. . . . . . 7
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
3 | | eulerpart.d |
. . . . . . 7
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
4 | | eulerpart.j |
. . . . . . 7
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
5 | | eulerpart.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
6 | | eulerpart.h |
. . . . . . 7
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
7 | | eulerpart.m |
. . . . . . 7
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
8 | | eulerpart.r |
. . . . . . 7
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
9 | | eulerpart.t |
. . . . . . 7
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
10 | | eulerpart.g |
. . . . . . 7
⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | eulerpartlemgv 29762 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
12 | 11 | cnveqd 5220 |
. . . . 5
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ◡(𝐺‘𝐴) = ◡((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))))) |
13 | 12 | imaeq1d 5384 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ {1}) = (◡((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) “ {1})) |
14 | | nnex 10903 |
. . . . 5
⊢ ℕ
∈ V |
15 | | imassrn 5396 |
. . . . . 6
⊢ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ⊆ ran 𝐹 |
16 | 4, 5 | oddpwdc 29743 |
. . . . . . 7
⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
17 | | f1of 6050 |
. . . . . . 7
⊢ (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 ×
ℕ0)⟶ℕ) |
18 | | frn 5966 |
. . . . . . 7
⊢ (𝐹:(𝐽 × ℕ0)⟶ℕ
→ ran 𝐹 ⊆
ℕ) |
19 | 16, 17, 18 | mp2b 10 |
. . . . . 6
⊢ ran 𝐹 ⊆
ℕ |
20 | 15, 19 | sstri 3577 |
. . . . 5
⊢ (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ⊆ ℕ |
21 | | indpi1 29411 |
. . . . 5
⊢ ((ℕ
∈ V ∧ (𝐹 “
(𝑀‘(bits ∘
(𝐴 ↾ 𝐽)))) ⊆ ℕ) →
(◡((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) |
22 | 14, 20, 21 | mp2an 704 |
. . . 4
⊢ (◡((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) |
23 | 13, 22 | syl6eq 2660 |
. . 3
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))))) |
24 | | ffun 5961 |
. . . . 5
⊢ (𝐹:(𝐽 × ℕ0)⟶ℕ
→ Fun 𝐹) |
25 | 16, 17, 24 | mp2b 10 |
. . . 4
⊢ Fun 𝐹 |
26 | | inss2 3796 |
. . . . 5
⊢
(𝒫 (𝐽
× ℕ0) ∩ Fin) ⊆ Fin |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | eulerpartlemmf 29764 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (bits ∘ (𝐴 ↾ 𝐽)) ∈ 𝐻) |
28 | 1, 2, 3, 4, 5, 6, 7 | eulerpartlem1 29756 |
. . . . . . . 8
⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
29 | | f1of 6050 |
. . . . . . . 8
⊢ (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
→ 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
30 | 28, 29 | ax-mp 5 |
. . . . . . 7
⊢ 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩
Fin) |
31 | 30 | ffvelrni 6266 |
. . . . . 6
⊢ ((bits
∘ (𝐴 ↾ 𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
32 | 27, 31 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
33 | 26, 32 | sseldi 3566 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ Fin) |
34 | | imafi 8142 |
. . . 4
⊢ ((Fun
𝐹 ∧ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽))) ∈ Fin) → (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∈ Fin) |
35 | 25, 33, 34 | sylancr 694 |
. . 3
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐹 “ (𝑀‘(bits ∘ (𝐴 ↾ 𝐽)))) ∈ Fin) |
36 | 23, 35 | eqeltrd 2688 |
. 2
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ {1}) ∈ Fin) |
37 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | eulerpartgbij 29761 |
. . . . . . . 8
⊢ 𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅) |
38 | | f1of 6050 |
. . . . . . . 8
⊢ (𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑𝑚 ℕ) ∩ 𝑅) → 𝐺:(𝑇 ∩ 𝑅)⟶(({0, 1} ↑𝑚
ℕ) ∩ 𝑅)) |
39 | 37, 38 | ax-mp 5 |
. . . . . . 7
⊢ 𝐺:(𝑇 ∩ 𝑅)⟶(({0, 1} ↑𝑚
ℕ) ∩ 𝑅) |
40 | 39 | ffvelrni 6266 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴) ∈ (({0, 1} ↑𝑚
ℕ) ∩ 𝑅)) |
41 | | elin 3758 |
. . . . . . 7
⊢ ((𝐺‘𝐴) ∈ (({0, 1} ↑𝑚
ℕ) ∩ 𝑅) ↔
((𝐺‘𝐴) ∈ ({0, 1} ↑𝑚
ℕ) ∧ (𝐺‘𝐴) ∈ 𝑅)) |
42 | 41 | simplbi 475 |
. . . . . 6
⊢ ((𝐺‘𝐴) ∈ (({0, 1} ↑𝑚
ℕ) ∩ 𝑅) →
(𝐺‘𝐴) ∈ ({0, 1} ↑𝑚
ℕ)) |
43 | | elmapi 7765 |
. . . . . 6
⊢ ((𝐺‘𝐴) ∈ ({0, 1} ↑𝑚
ℕ) → (𝐺‘𝐴):ℕ⟶{0, 1}) |
44 | 40, 42, 43 | 3syl 18 |
. . . . 5
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝐴):ℕ⟶{0, 1}) |
45 | | ffun 5961 |
. . . . 5
⊢ ((𝐺‘𝐴):ℕ⟶{0, 1} → Fun (𝐺‘𝐴)) |
46 | 44, 45 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → Fun (𝐺‘𝐴)) |
47 | | ssv 3588 |
. . . . 5
⊢
ℕ0 ⊆ V |
48 | | dfn2 11182 |
. . . . . 6
⊢ ℕ =
(ℕ0 ∖ {0}) |
49 | | ssdif 3707 |
. . . . . 6
⊢
(ℕ0 ⊆ V → (ℕ0 ∖ {0})
⊆ (V ∖ {0})) |
50 | 48, 49 | syl5eqss 3612 |
. . . . 5
⊢
(ℕ0 ⊆ V → ℕ ⊆ (V ∖
{0})) |
51 | 47, 50 | ax-mp 5 |
. . . 4
⊢ ℕ
⊆ (V ∖ {0}) |
52 | | sspreima 28827 |
. . . 4
⊢ ((Fun
(𝐺‘𝐴) ∧ ℕ ⊆ (V ∖ {0}))
→ (◡(𝐺‘𝐴) “ ℕ) ⊆ (◡(𝐺‘𝐴) “ (V ∖ {0}))) |
53 | 46, 51, 52 | sylancl 693 |
. . 3
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ ℕ) ⊆ (◡(𝐺‘𝐴) “ (V ∖ {0}))) |
54 | | fvex 6113 |
. . . . 5
⊢ (𝐺‘𝐴) ∈ V |
55 | | 0nn0 11184 |
. . . . 5
⊢ 0 ∈
ℕ0 |
56 | | suppimacnv 7193 |
. . . . 5
⊢ (((𝐺‘𝐴) ∈ V ∧ 0 ∈
ℕ0) → ((𝐺‘𝐴) supp 0) = (◡(𝐺‘𝐴) “ (V ∖ {0}))) |
57 | 54, 55, 56 | mp2an 704 |
. . . 4
⊢ ((𝐺‘𝐴) supp 0) = (◡(𝐺‘𝐴) “ (V ∖ {0})) |
58 | | 0ne1 10965 |
. . . . . . . . 9
⊢ 0 ≠
1 |
59 | | difprsn1 4271 |
. . . . . . . . 9
⊢ (0 ≠ 1
→ ({0, 1} ∖ {0}) = {1}) |
60 | 58, 59 | ax-mp 5 |
. . . . . . . 8
⊢ ({0, 1}
∖ {0}) = {1} |
61 | 60 | eqcomi 2619 |
. . . . . . 7
⊢ {1} =
({0, 1} ∖ {0}) |
62 | 61 | ffs2 28891 |
. . . . . 6
⊢ ((ℕ
∈ V ∧ 0 ∈ ℕ0 ∧ (𝐺‘𝐴):ℕ⟶{0, 1}) → ((𝐺‘𝐴) supp 0) = (◡(𝐺‘𝐴) “ {1})) |
63 | 14, 55, 62 | mp3an12 1406 |
. . . . 5
⊢ ((𝐺‘𝐴):ℕ⟶{0, 1} → ((𝐺‘𝐴) supp 0) = (◡(𝐺‘𝐴) “ {1})) |
64 | 44, 63 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → ((𝐺‘𝐴) supp 0) = (◡(𝐺‘𝐴) “ {1})) |
65 | 57, 64 | syl5eqr 2658 |
. . 3
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ (V ∖ {0})) = (◡(𝐺‘𝐴) “ {1})) |
66 | 53, 65 | sseqtrd 3604 |
. 2
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ ℕ) ⊆ (◡(𝐺‘𝐴) “ {1})) |
67 | | ssfi 8065 |
. 2
⊢ (((◡(𝐺‘𝐴) “ {1}) ∈ Fin ∧ (◡(𝐺‘𝐴) “ ℕ) ⊆ (◡(𝐺‘𝐴) “ {1})) → (◡(𝐺‘𝐴) “ ℕ) ∈
Fin) |
68 | 36, 66, 67 | syl2anc 691 |
1
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ ℕ) ∈
Fin) |