HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Structured version   Visualization version   GIF version

Theorem eigposi 28079
Description: A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1 𝐴 ∈ ℋ
eigpos.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigposi ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 6557 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
21eleq1d 2672 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ))
3 oveq1 6556 . . . . . . . . 9 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
41, 3eqeq12d 2625 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
5 eigpos.1 . . . . . . . . 9 𝐴 ∈ ℋ
6 eigpos.2 . . . . . . . . . 10 𝐵 ∈ ℂ
76, 5hvmulcli 27255 . . . . . . . . 9 (𝐵 · 𝐴) ∈ ℋ
8 hire 27335 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ (𝐵 · 𝐴) ∈ ℋ) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
95, 7, 8mp2an 704 . . . . . . . 8 ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴))
104, 9syl6rbbr 278 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
112, 10bitrd 267 . . . . . 6 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
1211adantr 480 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
135, 6eigrei 28077 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
1412, 13bitrd 267 . . . 4 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ 𝐵 ∈ ℝ))
1514biimpac 502 . . 3 (((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
1615adantlr 747 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
17 ax-his4 27326 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
185, 17mpan 702 . . . 4 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
1918ad2antll 761 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 < (𝐴 ·ih 𝐴))
20 simplr 788 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐴 ·ih (𝑇𝐴)))
211ad2antrl 760 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
22 his5 27327 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
236, 5, 5, 22mp3an 1416 . . . . . 6 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
2416cjred 13814 . . . . . . 7 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (∗‘𝐵) = 𝐵)
2524oveq1d 6564 . . . . . 6 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2623, 25syl5eq 2656 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝐵 · 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2721, 26eqtrd 2644 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2820, 27breqtrd 4609 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))
29 hiidrcl 27336 . . . . 5 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
305, 29ax-mp 5 . . . 4 (𝐴 ·ih 𝐴) ∈ ℝ
31 prodge02 10750 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ·ih 𝐴) ∈ ℝ) ∧ (0 < (𝐴 ·ih 𝐴) ∧ 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))) → 0 ≤ 𝐵)
3230, 31mpanl2 713 . . 3 ((𝐵 ∈ ℝ ∧ (0 < (𝐴 ·ih 𝐴) ∧ 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))) → 0 ≤ 𝐵)
3316, 19, 28, 32syl12anc 1316 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ 𝐵)
3416, 33jca 553 1 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   · cmul 9820   < clt 9953  cle 9954  ccj 13684  chil 27160   · csm 27162   ·ih csp 27163  0c0v 27165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hfvmul 27246  ax-hfi 27320  ax-his1 27323  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator