HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Structured version   Visualization version   GIF version

Theorem eigre 28078
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 6103 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 6557 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐵 · 𝐴) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2625 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐵 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0))))
4 neeq1 2844 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ≠ 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0))
53, 4anbi12d 743 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
6 id 22 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → 𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0))
76, 1oveq12d 6567 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐴)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))))
81, 6oveq12d 6567 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐴) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)))
97, 8eqeq12d 2625 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0))))
109bibi1d 332 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)))
115, 10imbi12d 333 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ))))
12 oveq1 6556 . . . . . 6 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
1312eqeq2d 2620 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
1413anbi1d 737 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
15 eleq1 2676 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 ∈ ℝ ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
1615bibi2d 331 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ)))
1714, 16imbi12d 333 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))))
18 ifhvhv0 27263 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
19 0cn 9911 . . . . 5 0 ∈ ℂ
2019elimel 4100 . . . 4 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
2118, 20eigrei 28077 . . 3 (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
2211, 17, 21dedth2h 4090 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)))
2322imp 444 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  ifcif 4036  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  chil 27160   · csm 27162   ·ih csp 27163  0c0v 27165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hv0cl 27244  ax-hfvmul 27246  ax-hfi 27320  ax-his1 27323  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689
This theorem is referenced by:  eighmre  28206
  Copyright terms: Public domain W3C validator