HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Unicode version

Theorem eigre 23291
Description: A necessary and sufficient condition (that holds when  T is a Hermitian operator) for an eigenvalue  B to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre  |-  ( ( ( A  e.  ~H  /\  B  e.  CC )  /\  ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h ) )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 5687 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  A )  =  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )
2 oveq2 6048 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( B  .h  A )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
) )
31, 2eqeq12d 2418 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  =  ( B  .h  A )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
4 neeq1 2575 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  =/=  0h  <->  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) )
53, 4anbi12d 692 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  A )  =  ( B  .h  A )  /\  A  =/=  0h ) 
<->  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) ) )
6 id 20 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  A  =  if ( A  e. 
~H ,  A ,  0h ) )
76, 1oveq12d 6058 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  .ih  ( T `  A ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) ) )
81, 6oveq12d 6058 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  .ih  A )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
) )
97, 8eqeq12d 2418 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) ) ) )
109bibi1d 311 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( A  .ih  ( T `  A ) )  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  B  e.  RR ) ) )
115, 10imbi12d 312 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h )  ->  ( ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
)  <->  B  e.  RR ) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  B  e.  RR ) ) ) )
12 oveq1 6047 . . . . . 6  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( B  .h  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) ) )
1312eqeq2d 2415 . . . . 5  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( if ( B  e.  CC ,  B , 
0 )  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
1413anbi1d 686 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
)  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) 
<->  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) ) )
15 eleq1 2464 . . . . 5  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( B  e.  RR  <->  if ( B  e.  CC ,  B ,  0 )  e.  RR ) )
1615bibi2d 310 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  B  e.  RR )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  if ( B  e.  CC ,  B ,  0 )  e.  RR ) ) )
1714, 16imbi12d 312 . . 3  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  B  e.  RR ) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  if ( B  e.  CC ,  B , 
0 )  e.  RR ) ) ) )
18 ax-hv0cl 22459 . . . . 5  |-  0h  e.  ~H
1918elimel 3751 . . . 4  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
20 0cn 9040 . . . . 5  |-  0  e.  CC
2120elimel 3751 . . . 4  |-  if ( B  e.  CC ,  B ,  0 )  e.  CC
2219, 21eigrei 23290 . . 3  |-  ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  if ( B  e.  CC ,  B , 
0 )  e.  RR ) )
2311, 17, 22dedth2h 3741 . 2  |-  ( ( A  e.  ~H  /\  B  e.  CC )  ->  ( ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h )  ->  ( ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
)  <->  B  e.  RR ) ) )
2423imp 419 1  |-  ( ( ( A  e.  ~H  /\  B  e.  CC )  /\  ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h ) )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   ifcif 3699   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   ~Hchil 22375    .h csm 22377    .ih csp 22378   0hc0v 22380
This theorem is referenced by:  eighmre  23419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-hv0cl 22459  ax-hfvmul 22461  ax-hfi 22534  ax-his1 22537  ax-his3 22539  ax-his4 22540
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-2 10014  df-cj 11859  df-re 11860  df-im 11861
  Copyright terms: Public domain W3C validator