HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Structured version   Unicode version

Theorem eigposi 27181
Description: A sufficient condition (first conjunct pair, that holds when  T is a positive operator) for an eigenvalue  B (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1  |-  A  e. 
~H
eigpos.2  |-  B  e.  CC
Assertion
Ref Expression
eigposi  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 6288 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  ( A  .ih  ( T `  A ) )  =  ( A  .ih  ( B  .h  A )
) )
21eleq1d 2473 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  e.  RR ) )
3 oveq1 6287 . . . . . . . . 9  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( T `  A
)  .ih  A )  =  ( ( B  .h  A )  .ih  A ) )
41, 3eqeq12d 2426 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
) )
5 eigpos.1 . . . . . . . . 9  |-  A  e. 
~H
6 eigpos.2 . . . . . . . . . 10  |-  B  e.  CC
76, 5hvmulcli 26358 . . . . . . . . 9  |-  ( B  .h  A )  e. 
~H
8 hire 26438 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  ( B  .h  A
)  e.  ~H )  ->  ( ( A  .ih  ( B  .h  A
) )  e.  RR  <->  ( A  .ih  ( B  .h  A ) )  =  ( ( B  .h  A )  .ih  A ) ) )
95, 7, 8mp2an 672 . . . . . . . 8  |-  ( ( A  .ih  ( B  .h  A ) )  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
)
104, 9syl6rbbr 266 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( B  .h  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
112, 10bitrd 255 . . . . . 6  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
1211adantr 465 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
135, 6eigrei 27179 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )
1412, 13bitrd 255 . . . 4  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  B  e.  RR ) )
1514biimpac 486 . . 3  |-  ( ( ( A  .ih  ( T `  A )
)  e.  RR  /\  ( ( T `  A )  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
1615adantlr 715 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
17 ax-his4 26429 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( A  .ih  A ) )
185, 17mpan 670 . . . 4  |-  ( A  =/=  0h  ->  0  <  ( A  .ih  A
) )
1918ad2antll 729 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <  ( A  .ih  A ) )
20 simplr 756 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( A  .ih  ( T `  A ) ) )
211ad2antrl 728 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( A 
.ih  ( B  .h  A ) ) )
22 his5 26430 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  ~H  /\  A  e.  ~H )  ->  ( A  .ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) ) )
236, 5, 5, 22mp3an 1328 . . . . . 6  |-  ( A 
.ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) )
2416cjred 13210 . . . . . . 7  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( * `  B )  =  B )
2524oveq1d 6295 . . . . . 6  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( ( * `
 B )  x.  ( A  .ih  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2623, 25syl5eq 2457 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( B  .h  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2721, 26eqtrd 2445 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( B  x.  ( A  .ih  A ) ) )
2820, 27breqtrd 4421 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( B  x.  ( A  .ih  A ) ) )
29 hiidrcl 26439 . . . . 5  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
305, 29ax-mp 5 . . . 4  |-  ( A 
.ih  A )  e.  RR
31 prodge02 10433 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  .ih  A
)  e.  RR )  /\  ( 0  < 
( A  .ih  A
)  /\  0  <_  ( B  x.  ( A 
.ih  A ) ) ) )  ->  0  <_  B )
3230, 31mpanl2 681 . . 3  |-  ( ( B  e.  RR  /\  ( 0  <  ( A  .ih  A )  /\  0  <_  ( B  x.  ( A  .ih  A ) ) ) )  -> 
0  <_  B )
3316, 19, 28, 32syl12anc 1230 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  B
)
3416, 33jca 532 1  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844    =/= wne 2600   class class class wbr 4397   ` cfv 5571  (class class class)co 6280   CCcc 9522   RRcr 9523   0cc0 9524    x. cmul 9529    < clt 9660    <_ cle 9661   *ccj 13080   ~Hchil 26263    .h csm 26265    .ih csp 26266   0hc0v 26268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-hfvmul 26349  ax-hfi 26423  ax-his1 26426  ax-his3 26428  ax-his4 26429
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-po 4746  df-so 4747  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-2 10637  df-cj 13083  df-re 13084  df-im 13085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator