HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Unicode version

Theorem eigposi 22246
Description: A sufficient condition (first conjunct pair, that holds when  T is a positive operator) for an eigenvalue  B (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1  |-  A  e. 
~H
eigpos.2  |-  B  e.  CC
Assertion
Ref Expression
eigposi  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 5718 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  ( A  .ih  ( T `  A ) )  =  ( A  .ih  ( B  .h  A )
) )
21eleq1d 2319 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  e.  RR ) )
3 oveq1 5717 . . . . . . . . 9  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( T `  A
)  .ih  A )  =  ( ( B  .h  A )  .ih  A ) )
41, 3eqeq12d 2267 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
) )
5 eigpos.1 . . . . . . . . 9  |-  A  e. 
~H
6 eigpos.2 . . . . . . . . . 10  |-  B  e.  CC
76, 5hvmulcli 21424 . . . . . . . . 9  |-  ( B  .h  A )  e. 
~H
8 hire 21503 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  ( B  .h  A
)  e.  ~H )  ->  ( ( A  .ih  ( B  .h  A
) )  e.  RR  <->  ( A  .ih  ( B  .h  A ) )  =  ( ( B  .h  A )  .ih  A ) ) )
95, 7, 8mp2an 656 . . . . . . . 8  |-  ( ( A  .ih  ( B  .h  A ) )  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
)
104, 9syl6rbbr 257 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( B  .h  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
112, 10bitrd 246 . . . . . 6  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
1211adantr 453 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
135, 6eigrei 22244 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )
1412, 13bitrd 246 . . . 4  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  B  e.  RR ) )
1514biimpac 474 . . 3  |-  ( ( ( A  .ih  ( T `  A )
)  e.  RR  /\  ( ( T `  A )  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
1615adantlr 698 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
17 ax-his4 21494 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( A  .ih  A ) )
185, 17mpan 654 . . . 4  |-  ( A  =/=  0h  ->  0  <  ( A  .ih  A
) )
1918ad2antll 712 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <  ( A  .ih  A ) )
20 simplr 734 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( A  .ih  ( T `  A ) ) )
211ad2antrl 711 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( A 
.ih  ( B  .h  A ) ) )
22 his5 21495 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  ~H  /\  A  e.  ~H )  ->  ( A  .ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) ) )
236, 5, 5, 22mp3an 1282 . . . . . 6  |-  ( A 
.ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) )
2416cjred 11588 . . . . . . 7  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( * `  B )  =  B )
2524oveq1d 5725 . . . . . 6  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( ( * `
 B )  x.  ( A  .ih  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2623, 25syl5eq 2297 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( B  .h  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2721, 26eqtrd 2285 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( B  x.  ( A  .ih  A ) ) )
2820, 27breqtrd 3944 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( B  x.  ( A  .ih  A ) ) )
29 hiidrcl 21504 . . . . 5  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
305, 29ax-mp 10 . . . 4  |-  ( A 
.ih  A )  e.  RR
31 prodge02 9484 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  .ih  A
)  e.  RR )  /\  ( 0  < 
( A  .ih  A
)  /\  0  <_  ( B  x.  ( A 
.ih  A ) ) ) )  ->  0  <_  B )
3230, 31mpanl2 665 . . 3  |-  ( ( B  e.  RR  /\  ( 0  <  ( A  .ih  A )  /\  0  <_  ( B  x.  ( A  .ih  A ) ) ) )  -> 
0  <_  B )
3316, 19, 28, 32syl12anc 1185 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  B
)
3416, 33jca 520 1  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617    x. cmul 8622    < clt 8747    <_ cle 8748   *ccj 11458   ~Hchil 21329    .h csm 21331    .ih csp 21332   0hc0v 21334
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-hfvmul 21415  ax-hfi 21488  ax-his1 21491  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-2 9684  df-cj 11461  df-re 11462  df-im 11463
  Copyright terms: Public domain W3C validator