Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvratlem Structured version   Visualization version   GIF version

Theorem cvratlem 33725
Description: Lemma for cvrat 33726. (atcvatlem 28628 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b 𝐵 = (Base‘𝐾)
cvrat.s < = (lt‘𝐾)
cvrat.j = (join‘𝐾)
cvrat.z 0 = (0.‘𝐾)
cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvratlem (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))

Proof of Theorem cvratlem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 hlatl 33665 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1060 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2610 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 cvrat.z . . . . . 6 0 = (0.‘𝐾)
7 cvrat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 33621 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋)
983expia 1259 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
102, 3, 9syl2anc 691 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
1113ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
12 simp22 1088 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
13 simp3 1056 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
145, 7atcmp 33616 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
1511, 12, 13, 14syl3anc 1318 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
16 breq1 4586 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑟 → (𝑃(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
1716biimprd 237 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
1815, 17syl6bi 242 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
1918com23 84 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋)))
20 con3 148 . . . . . . . . . . . . . 14 ((𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟))
2119, 20syl6 34 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟)))
2221impd 446 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → ¬ 𝑃(le‘𝐾)𝑟))
23 simp1 1054 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
244, 7atbase 33594 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟𝐵)
25243ad2ant3 1077 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐵)
26 cvrat.j . . . . . . . . . . . . . 14 = (join‘𝐾)
27 eqid 2610 . . . . . . . . . . . . . 14 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
284, 5, 26, 27, 7cvr1 33714 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
2923, 25, 12, 28syl3anc 1318 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3022, 29sylibd 228 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3130imp 444 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃))
32 hllat 33668 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Lat)
33323ad2ant1 1075 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
344, 7atbase 33594 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
3512, 34syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐵)
364, 26latjcom 16882 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) = (𝑟 𝑃))
3733, 35, 25, 36syl3anc 1318 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) = (𝑟 𝑃))
3837adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → (𝑃 𝑟) = (𝑟 𝑃))
3931, 38breqtrrd 4611 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
4039adantrrl 756 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
415, 26, 7hlatlej1 33679 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4223, 12, 13, 41syl3anc 1318 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4342adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑟))
445, 7atcmp 33616 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
4511, 13, 12, 44syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
46 breq1 4586 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4746biimpd 218 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4845, 47syl6bi 242 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
4948com23 84 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋)))
50 con3 148 . . . . . . . . . . . . . . 15 ((𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃))
5149, 50syl6 34 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃)))
5251imp32 448 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → ¬ 𝑟(le‘𝐾)𝑃)
5352adantrrl 756 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ¬ 𝑟(le‘𝐾)𝑃)
54 simprl 790 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)𝑋)
55 simp21 1087 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑋𝐵)
56 simp23 1089 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
574, 7atbase 33594 . . . . . . . . . . . . . . . . . . 19 (𝑄𝐴𝑄𝐵)
5856, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐵)
594, 26latjcl 16874 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6033, 35, 58, 59syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑄) ∈ 𝐵)
6123, 55, 603jca 1235 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵))
62 cvrat.s . . . . . . . . . . . . . . . . . 18 < = (lt‘𝐾)
635, 62pltle 16784 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 𝑄) → 𝑋(le‘𝐾)(𝑃 𝑄)))
6463imp 444 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6561, 64sylan 487 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6665adantrl 748 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑋(le‘𝐾)(𝑃 𝑄))
67 hlpos 33670 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
68673ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Poset)
694, 5postr 16776 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ (𝑟𝐵𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7068, 25, 55, 60, 69syl13anc 1320 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7170adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7254, 66, 71mp2and 711 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)(𝑃 𝑄))
7372adantrrr 757 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟(le‘𝐾)(𝑃 𝑄))
744, 5, 26, 7hlexch1 33686 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵) ∧ ¬ 𝑟(le‘𝐾)𝑃) → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟)))
75743expia 1259 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → (¬ 𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟))))
7675impd 446 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7723, 13, 56, 35, 76syl13anc 1320 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7877adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7953, 73, 78mp2and 711 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑄(le‘𝐾)(𝑃 𝑟))
804, 26latjcl 16874 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) ∈ 𝐵)
8133, 35, 25, 80syl3anc 1318 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) ∈ 𝐵)
824, 5, 26latjle12 16885 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵 ∧ (𝑃 𝑟) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8333, 35, 58, 81, 82syl13anc 1320 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8483adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8543, 79, 84mpbi2and 958 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟))
865, 26, 7hlatlej1 33679 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8723, 12, 56, 86syl3anc 1318 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8887adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑄))
894, 5, 26latjle12 16885 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑟𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9033, 35, 25, 60, 89syl13anc 1320 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9190adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9288, 73, 91mpbi2and 958 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄))
9333, 60, 813jca 1235 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
9493adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
954, 5latasymb 16877 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9694, 95syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9785, 92, 96mpbi2and 958 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄) = (𝑃 𝑟))
98 breq2 4587 . . . . . . . . . . . 12 ((𝑃 𝑄) = (𝑃 𝑟) → (𝑋 < (𝑃 𝑄) ↔ 𝑋 < (𝑃 𝑟)))
9998biimpcd 238 . . . . . . . . . . 11 (𝑋 < (𝑃 𝑄) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10099adantr 480 . . . . . . . . . 10 ((𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
101100ad2antll 761 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10297, 101mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋 < (𝑃 𝑟))
1034, 5, 62, 27cvrnbtwn3 33581 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) ↔ 𝑟 = 𝑋))
104103biimpd 218 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
1051043expia 1259 . . . . . . . . . . . . 13 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵)) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
10668, 25, 81, 55, 105syl13anc 1320 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
107106exp4a 631 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
108107com23 84 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
109108imp4b 611 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑟(le‘𝐾)𝑋) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
110109adantrr 749 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
11140, 102, 110mp2and 711 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟 = 𝑋)
112 simpl3 1059 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟𝐴)
113111, 112eqeltrrd 2689 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋𝐴)
114113exp45 640 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
1151143expa 1257 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
116115rexlimdva 3013 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (∃𝑟𝐴 𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
11710, 116syld 46 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
118117imp32 448 1 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  Posetcpo 16763  ltcplt 16764  joincjn 16767  0.cp0 16860  Latclat 16868  ccvr 33567  Atomscatm 33568  AtLatcal 33569  HLchlt 33655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656
This theorem is referenced by:  cvrat  33726
  Copyright terms: Public domain W3C validator