Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5230
 Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1774 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3176 . . . . 5 𝑥 ∈ V
3 vex 3176 . . . . 5 𝑦 ∈ V
42, 3brco 5214 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3176 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5227 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5227 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 729 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1764 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 291 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 4649 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5046 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5047 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2642 1 (𝐴𝐵) = (𝐵𝐴)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475  ∃wex 1695   class class class wbr 4583  {copab 4642  ◡ccnv 5037   ∘ ccom 5042 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-cnv 5046  df-co 5047 This theorem is referenced by:  rncoss  5307  rncoeq  5310  dmco  5560  cores2  5565  co01  5567  coi2  5569  relcnvtr  5572  dfdm2  5584  f1co  6023  cofunex2g  7024  fparlem3  7166  fparlem4  7167  supp0cosupp0  7221  imacosupp  7222  fsuppcolem  8189  relexpcnv  13623  relexpaddg  13641  cnvps  17035  gimco  17533  gsumzf1o  18136  cnco  20880  ptrescn  21252  qtopcn  21327  hmeoco  21385  cncombf  23231  deg1val  23660  fcoinver  28798  ofpreima  28848  mbfmco  29653  eulerpartlemmf  29764  cvmliftmolem1  30517  cvmlift2lem9a  30539  cvmlift2lem9  30547  mclsppslem  30734  ftc1anclem3  32657  trlcocnv  35026  tendoicl  35102  cdlemk45  35253  cononrel1  36919  cononrel2  36920  cnvtrcl0  36952  cnvtrrel  36981  relexpaddss  37029  frege131d  37075  brco2f1o  37350  brco3f1o  37351  clsneicnv  37423  neicvgnvo  37433  smfco  39687
 Copyright terms: Public domain W3C validator