Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9a Structured version   Visualization version   GIF version

Theorem cvmlift2lem9a 30539
Description: Lemma for cvmlift2 30552 and cvmlift3 30564. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift2lem9a.b 𝐵 = 𝐶
cvmlift2lem9a.y 𝑌 = 𝐾
cvmlift2lem9a.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9a.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2lem9a.h (𝜑𝐻:𝑌𝐵)
cvmlift2lem9a.g (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
cvmlift2lem9a.k (𝜑𝐾 ∈ Top)
cvmlift2lem9a.1 (𝜑𝑋𝑌)
cvmlift2lem9a.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift2lem9a.3 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
cvmlift2lem9a.4 (𝜑𝑀𝑌)
cvmlift2lem9a.6 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
Assertion
Ref Expression
cvmlift2lem9a (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
Distinct variable groups:   𝑐,𝑑,𝑘,𝑠,𝐴   𝐹,𝑐,𝑑,𝑘,𝑠   𝐽,𝑐,𝑑,𝑘,𝑠   𝑇,𝑐,𝑑,𝑠   𝐶,𝑐,𝑑,𝑘,𝑠   𝑊,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑘)   𝐻(𝑘,𝑠,𝑐,𝑑)   𝐾(𝑘,𝑠,𝑐,𝑑)   𝑀(𝑘,𝑠,𝑐,𝑑)   𝑊(𝑘,𝑠)   𝑋(𝑘,𝑠,𝑐,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift2lem9a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmlift2lem9a.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmtop1 30496 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐶 ∈ Top)
4 cnrest2r 20901 . . 3 (𝐶 ∈ Top → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
53, 4syl 17 . 2 (𝜑 → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
6 cvmlift2lem9a.h . . . . . 6 (𝜑𝐻:𝑌𝐵)
7 ffn 5958 . . . . . 6 (𝐻:𝑌𝐵𝐻 Fn 𝑌)
86, 7syl 17 . . . . 5 (𝜑𝐻 Fn 𝑌)
9 cvmlift2lem9a.4 . . . . 5 (𝜑𝑀𝑌)
10 fnssres 5918 . . . . 5 ((𝐻 Fn 𝑌𝑀𝑌) → (𝐻𝑀) Fn 𝑀)
118, 9, 10syl2anc 691 . . . 4 (𝜑 → (𝐻𝑀) Fn 𝑀)
12 df-ima 5051 . . . . 5 (𝐻𝑀) = ran (𝐻𝑀)
13 cvmlift2lem9a.6 . . . . 5 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
1412, 13syl5eqssr 3613 . . . 4 (𝜑 → ran (𝐻𝑀) ⊆ 𝑊)
15 df-f 5808 . . . 4 ((𝐻𝑀):𝑀𝑊 ↔ ((𝐻𝑀) Fn 𝑀 ∧ ran (𝐻𝑀) ⊆ 𝑊))
1611, 14, 15sylanbrc 695 . . 3 (𝜑 → (𝐻𝑀):𝑀𝑊)
17 cvmlift2lem9a.2 . . . . . . . . . . 11 (𝜑𝑇 ∈ (𝑆𝐴))
18 cvmlift2lem9a.3 . . . . . . . . . . . 12 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
1918simpld 474 . . . . . . . . . . 11 (𝜑𝑊𝑇)
20 cvmlift2lem9a.s . . . . . . . . . . . 12 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
2120cvmsf1o 30508 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → (𝐹𝑊):𝑊1-1-onto𝐴)
221, 17, 19, 21syl3anc 1318 . . . . . . . . . 10 (𝜑 → (𝐹𝑊):𝑊1-1-onto𝐴)
2322adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1-onto𝐴)
24 f1of1 6049 . . . . . . . . 9 ((𝐹𝑊):𝑊1-1-onto𝐴 → (𝐹𝑊):𝑊1-1𝐴)
2523, 24syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1𝐴)
26 cvmlift2lem9a.b . . . . . . . . . . . 12 𝐵 = 𝐶
2726toptopon 20548 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
283, 27sylib 207 . . . . . . . . . 10 (𝜑𝐶 ∈ (TopOn‘𝐵))
2920cvmsss 30503 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
3017, 29syl 17 . . . . . . . . . . . 12 (𝜑𝑇𝐶)
3130, 19sseldd 3569 . . . . . . . . . . 11 (𝜑𝑊𝐶)
32 toponss 20544 . . . . . . . . . . 11 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐶) → 𝑊𝐵)
3328, 31, 32syl2anc 691 . . . . . . . . . 10 (𝜑𝑊𝐵)
34 resttopon 20775 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐵) → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
3528, 33, 34syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
36 toponss 20544 . . . . . . . . 9 (((𝐶t 𝑊) ∈ (TopOn‘𝑊) ∧ 𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
3735, 36sylan 487 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
38 f1imacnv 6066 . . . . . . . 8 (((𝐹𝑊):𝑊1-1𝐴𝑥𝑊) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
3925, 37, 38syl2anc 691 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
4039imaeq2d 5385 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = ((𝐻𝑀) “ 𝑥))
41 imaco 5557 . . . . . . 7 (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)))
42 cnvco 5230 . . . . . . . . 9 ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐻𝑀) ∘ (𝐹𝑊))
43 cores 5555 . . . . . . . . . . . . 13 (ran (𝐻𝑀) ⊆ 𝑊 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
4414, 43syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
45 resco 5556 . . . . . . . . . . . 12 ((𝐹𝐻) ↾ 𝑀) = (𝐹 ∘ (𝐻𝑀))
4644, 45syl6eqr 2662 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4847cnveqd 5220 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4942, 48syl5eqr 2658 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) ∘ (𝐹𝑊)) = ((𝐹𝐻) ↾ 𝑀))
5049imaeq1d 5384 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5141, 50syl5eqr 2658 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5240, 51eqtr3d 2646 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
53 cvmlift2lem9a.g . . . . . . . 8 (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
54 cvmlift2lem9a.y . . . . . . . . 9 𝑌 = 𝐾
5554cnrest 20899 . . . . . . . 8 (((𝐹𝐻) ∈ (𝐾 Cn 𝐽) ∧ 𝑀𝑌) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5653, 9, 55syl2anc 691 . . . . . . 7 (𝜑 → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5756adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
58 resima2 5352 . . . . . . . 8 (𝑥𝑊 → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
5937, 58syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
601adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
61 restopn2 20791 . . . . . . . . . 10 ((𝐶 ∈ Top ∧ 𝑊𝐶) → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
623, 31, 61syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
6362simprbda 651 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝐶)
64 cvmopn 30516 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ 𝐽)
6560, 63, 64syl2anc 691 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑥) ∈ 𝐽)
6659, 65eqeltrd 2688 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) ∈ 𝐽)
67 cnima 20879 . . . . . 6 ((((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽) ∧ ((𝐹𝑊) “ 𝑥) ∈ 𝐽) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6857, 66, 67syl2anc 691 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6952, 68eqeltrd 2688 . . . 4 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
7069ralrimiva 2949 . . 3 (𝜑 → ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
71 cvmlift2lem9a.k . . . . . 6 (𝜑𝐾 ∈ Top)
7254toptopon 20548 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
7371, 72sylib 207 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
74 resttopon 20775 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
7573, 9, 74syl2anc 691 . . . 4 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
76 iscn 20849 . . . 4 (((𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ (𝐶t 𝑊) ∈ (TopOn‘𝑊)) → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7775, 35, 76syl2anc 691 . . 3 (𝜑 → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7816, 70, 77mpbir2and 959 . 2 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)))
795, 78sseldd 3569 1 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372  cmpt 4643  ccnv 5037  ran crn 5039  cres 5040  cima 5041  ccom 5042   Fn wfn 5799  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  TopOnctopon 20518   Cn ccn 20838  Homeochmeo 21366   CovMap ccvm 30491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-hmeo 21368  df-cvm 30492
This theorem is referenced by:  cvmlift2lem9  30547  cvmlift3lem7  30561
  Copyright terms: Public domain W3C validator