Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gimco | Structured version Visualization version GIF version |
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gimco | ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgim2 17530 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇))) | |
2 | isgim2 17530 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) | |
3 | ghmco 17503 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
4 | cnvco 5230 | . . . . . 6 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
5 | ghmco 17503 | . . . . . . 7 ⊢ ((◡𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) | |
6 | 5 | ancoms 468 | . . . . . 6 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) |
7 | 4, 6 | syl5eqel 2692 | . . . . 5 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆)) |
8 | 3, 7 | anim12i 588 | . . . 4 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
9 | 8 | an4s 865 | . . 3 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
10 | 1, 2, 9 | syl2anb 495 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
11 | isgim2 17530 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | |
12 | 10, 11 | sylibr 223 | 1 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 ◡ccnv 5037 ∘ ccom 5042 (class class class)co 6549 GrpHom cghm 17480 GrpIso cgim 17522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-grp 17248 df-ghm 17481 df-gim 17524 |
This theorem is referenced by: gictr 17540 |
Copyright terms: Public domain | W3C validator |