MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncombf Structured version   Visualization version   GIF version

Theorem cncombf 23231
Description: The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncombf ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)

Proof of Theorem cncombf
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1056 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺 ∈ (𝐵cn→ℂ))
2 cncff 22504 . . . . 5 (𝐺 ∈ (𝐵cn→ℂ) → 𝐺:𝐵⟶ℂ)
31, 2syl 17 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺:𝐵⟶ℂ)
4 simp2 1055 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐹:𝐴𝐵)
5 fco 5971 . . . 4 ((𝐺:𝐵⟶ℂ ∧ 𝐹:𝐴𝐵) → (𝐺𝐹):𝐴⟶ℂ)
63, 4, 5syl2anc 691 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹):𝐴⟶ℂ)
7 fdm 5964 . . . . . 6 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
84, 7syl 17 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 = 𝐴)
9 mbfdm 23201 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
1093ad2ant1 1075 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 ∈ dom vol)
118, 10eqeltrrd 2689 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ∈ dom vol)
12 mblss 23106 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1311, 12syl 17 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ⊆ ℝ)
14 cnex 9896 . . . 4 ℂ ∈ V
15 reex 9906 . . . 4 ℝ ∈ V
16 elpm2r 7761 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
1714, 15, 16mpanl12 714 . . 3 (((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
186, 13, 17syl2anc 691 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
19 recncf 22513 . . . . . . . 8 ℜ ∈ (ℂ–cn→ℝ)
2019a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℜ ∈ (ℂ–cn→ℝ))
211, 20cncfco 22518 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
2221adantr 480 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
23 cnvco 5230 . . . . . . . . . 10 (𝑔𝐹) = (𝐹𝑔)
2423imaeq1i 5382 . . . . . . . . 9 ((𝑔𝐹) “ 𝑥) = ((𝐹𝑔) “ 𝑥)
25 imaco 5557 . . . . . . . . 9 ((𝐹𝑔) “ 𝑥) = (𝐹 “ (𝑔𝑥))
2624, 25eqtri 2632 . . . . . . . 8 ((𝑔𝐹) “ 𝑥) = (𝐹 “ (𝑔𝑥))
27 simplll 794 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹 ∈ MblFn)
28 simpllr 795 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹:𝐴𝐵)
29 cncfrss 22502 . . . . . . . . . 10 (𝑔 ∈ (𝐵cn→ℝ) → 𝐵 ⊆ ℂ)
3029adantl 481 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐵 ⊆ ℂ)
31 simpr 476 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (𝐵cn→ℝ))
32 ax-resscn 9872 . . . . . . . . . . . 12 ℝ ⊆ ℂ
33 eqid 2610 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 eqid 2610 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t 𝐵) = ((TopOpen‘ℂfld) ↾t 𝐵)
3533tgioo2 22414 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3633, 34, 35cncfcn 22520 . . . . . . . . . . . 12 ((𝐵 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3730, 32, 36sylancl 693 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3831, 37eleqtrd 2690 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
39 retopbas 22374 . . . . . . . . . . . 12 ran (,) ∈ TopBases
40 bastg 20581 . . . . . . . . . . . 12 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4139, 40ax-mp 5 . . . . . . . . . . 11 ran (,) ⊆ (topGen‘ran (,))
42 simplr 788 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ ran (,))
4341, 42sseldi 3566 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ (topGen‘ran (,)))
44 cnima 20879 . . . . . . . . . 10 ((𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4538, 43, 44syl2anc 691 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4633, 34mbfimaopn2 23230 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐵 ⊆ ℂ) ∧ (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4727, 28, 30, 45, 46syl31anc 1321 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4826, 47syl5eqel 2692 . . . . . . 7 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → ((𝑔𝐹) “ 𝑥) ∈ dom vol)
4948ralrimiva 2949 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
50493adantl3 1212 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
51 coeq1 5201 . . . . . . . . . 10 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = ((ℜ ∘ 𝐺) ∘ 𝐹))
52 coass 5571 . . . . . . . . . 10 ((ℜ ∘ 𝐺) ∘ 𝐹) = (ℜ ∘ (𝐺𝐹))
5351, 52syl6eq 2660 . . . . . . . . 9 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
5453cnveqd 5220 . . . . . . . 8 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
5554imaeq1d 5384 . . . . . . 7 (𝑔 = (ℜ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℜ ∘ (𝐺𝐹)) “ 𝑥))
5655eleq1d 2672 . . . . . 6 (𝑔 = (ℜ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
5756rspcv 3278 . . . . 5 ((ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ) → (∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol → ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
5822, 50, 57sylc 63 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
59 imcncf 22514 . . . . . . . 8 ℑ ∈ (ℂ–cn→ℝ)
6059a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℑ ∈ (ℂ–cn→ℝ))
611, 60cncfco 22518 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6261adantr 480 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
63 coeq1 5201 . . . . . . . . . 10 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = ((ℑ ∘ 𝐺) ∘ 𝐹))
64 coass 5571 . . . . . . . . . 10 ((ℑ ∘ 𝐺) ∘ 𝐹) = (ℑ ∘ (𝐺𝐹))
6563, 64syl6eq 2660 . . . . . . . . 9 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6665cnveqd 5220 . . . . . . . 8 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6766imaeq1d 5384 . . . . . . 7 (𝑔 = (ℑ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℑ ∘ (𝐺𝐹)) “ 𝑥))
6867eleq1d 2672 . . . . . 6 (𝑔 = (ℑ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
6968rspcv 3278 . . . . 5 ((ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ) → (∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol → ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
7062, 50, 69sylc 63 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
7158, 70jca 553 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
7271ralrimiva 2949 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
73 ismbf1 23199 . 2 ((𝐺𝐹) ∈ MblFn ↔ ((𝐺𝐹) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)))
7418, 72, 73sylanbrc 695 1 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  pm cpm 7745  cc 9813  cr 9814  (,)cioo 12046  cre 13685  cim 13686  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  TopBasesctb 20520   Cn ccn 20838  cnccncf 22487  volcvol 23039  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194
This theorem is referenced by:  iblabslem  23400  iblabs  23401  bddmulibl  23411
  Copyright terms: Public domain W3C validator