MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknclwlkdifnum Structured version   Visualization version   GIF version

Theorem clwlknclwlkdifnum 26488
Description: In a k-regular graph, the size of the set of walks of length n starting with a fixed vertex and ending not at this vertex is the difference between k to the power of n and the size of the set of walks of length n starting with this vertex and ending at this vertex. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
Hypotheses
Ref Expression
clwlknclwlkdif.a 𝐴 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}
clwlknclwlkdif.b 𝐵 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}
Assertion
Ref Expression
clwlknclwlkdifnum (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘𝐴) = ((𝐾𝑁) − (#‘𝐵)))
Distinct variable groups:   𝑤,𝐸   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑤)   𝐾(𝑤)

Proof of Theorem clwlknclwlkdifnum
StepHypRef Expression
1 clwlknclwlkdif.a . . . 4 𝐴 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}
2 clwlknclwlkdif.b . . . 4 𝐵 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}
31, 2clwlknclwlkdifs 26487 . . 3 𝐴 = ({𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)
43fveq2i 6106 . 2 (#‘𝐴) = (#‘({𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵))
5 simpr 476 . . . . . 6 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) → 𝑉 ∈ Fin)
65adantr 480 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → 𝑉 ∈ Fin)
7 wwlknfi 26266 . . . . 5 (𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin)
8 rabfi 8070 . . . . 5 (((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
96, 7, 83syl 18 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
10 simpr 476 . . . . . . 7 ((( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
1110a1i 11 . . . . . 6 (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → ((( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋))
1211ss2rabi 3647 . . . . 5 {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ⊆ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}
132, 12eqsstri 3598 . . . 4 𝐵 ⊆ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}
14 hashssdif 13061 . . . 4 (({𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∈ Fin ∧ 𝐵 ⊆ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}) → (#‘({𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}) − (#‘𝐵)))
159, 13, 14sylancl 693 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘({𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}) − (#‘𝐵)))
16 simpl 472 . . . . . 6 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) → ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾)
1716adantr 480 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾)
18 simpl 472 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → 𝑋𝑉)
1918adantl 481 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → 𝑋𝑉)
20 nnnn0 11176 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2120adantl 481 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
2221adantl 481 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ0)
23 rusgranumwwlkg 26486 . . . . 5 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ0)) → (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
2417, 6, 19, 22, 23syl13anc 1320 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
2524oveq1d 6564 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋}) − (#‘𝐵)) = ((𝐾𝑁) − (#‘𝐵)))
2615, 25eqtrd 2644 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘({𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((𝐾𝑁) − (#‘𝐵)))
274, 26syl5eq 2656 1 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘𝐴) = ((𝐾𝑁) − (#‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  cdif 3537  wss 3540  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  cmin 10145  cn 10897  0cn0 11169  cexp 12722  #chash 12979   lastS clsw 13147   WWalksN cwwlkn 26206   RegUSGrph crusgra 26450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-usgra 25862  df-nbgra 25949  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208  df-vdgr 26421  df-rgra 26451  df-rusgra 26452
This theorem is referenced by:  numclwwlkqhash  26627
  Copyright terms: Public domain W3C validator