Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj910 Structured version   Visualization version   GIF version

Theorem bnj910 30272
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj910.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj910.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj910.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj910.4 (𝜑′[𝑝 / 𝑛]𝜑)
bnj910.5 (𝜓′[𝑝 / 𝑛]𝜓)
bnj910.6 (𝜒′[𝑝 / 𝑛]𝜒)
bnj910.7 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj910.8 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj910.9 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj910.10 𝐷 = (ω ∖ {∅})
bnj910.11 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj910.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj910.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj910.14 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj910.15 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
Assertion
Ref Expression
bnj910 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜒″)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑖,𝐺   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛   𝑓,𝑝,𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑝)   𝐵(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑚,𝑝)   𝑅(𝑝)   𝐺(𝑦,𝑓,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑚,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj910
StepHypRef Expression
1 bnj910.3 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj910.10 . . . 4 𝐷 = (ω ∖ {∅})
31, 2bnj970 30271 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)
4 bnj910.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
5 bnj910.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 bnj910.12 . . . . 5 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
7 bnj910.14 . . . . 5 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
8 bnj910.15 . . . . 5 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
94, 5, 1, 2, 6, 7, 8bnj969 30270 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
10 simpr3 1062 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛)
111bnj1235 30129 . . . . . 6 (𝜒𝑓 Fn 𝑛)
12113ad2ant1 1075 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑓 Fn 𝑛)
1312adantl 481 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑓 Fn 𝑛)
14 bnj910.13 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
1514bnj941 30097 . . . . 5 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
16153impib 1254 . . . 4 ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)
179, 10, 13, 16syl3anc 1318 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
18 bnj910.4 . . . 4 (𝜑′[𝑝 / 𝑛]𝜑)
19 bnj910.7 . . . 4 (𝜑″[𝐺 / 𝑓]𝜑′)
204, 5, 1, 18, 19, 2, 6, 14, 7, 8bnj944 30262 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜑″)
21 bnj910.5 . . . 4 (𝜓′[𝑝 / 𝑛]𝜓)
22 bnj910.8 . . . 4 (𝜓″[𝐺 / 𝑓]𝜓′)
235, 1, 2, 6, 14, 9bnj967 30269 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
241, 2, 6, 14, 9, 17bnj966 30268 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
255, 1, 21, 22, 6, 14, 23, 24bnj964 30267 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜓″)
263, 17, 20, 25bnj951 30100 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
27 bnj910.6 . . . 4 (𝜒′[𝑝 / 𝑛]𝜒)
28 vex 3176 . . . 4 𝑝 ∈ V
291, 18, 21, 27, 28bnj919 30091 . . 3 (𝜒′ ↔ (𝑝𝐷𝑓 Fn 𝑝𝜑′𝜓′))
30 bnj910.9 . . 3 (𝜒″[𝐺 / 𝑓]𝜒′)
3114bnj918 30090 . . 3 𝐺 ∈ V
3229, 19, 22, 30, 31bnj976 30102 . 2 (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))
3326, 32sylibr 223 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜒″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  [wsbc 3402  cdif 3537  cun 3538  c0 3874  {csn 4125  cop 4131   ciun 4455  suc csuc 5642   Fn wfn 5799  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-reg 8380
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-bnj17 30006  df-bnj14 30008  df-bnj13 30010  df-bnj15 30012
This theorem is referenced by:  bnj998  30280
  Copyright terms: Public domain W3C validator