Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj969 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj969.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj969.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj969.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj969.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj969.12 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj969.14 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj969.15 | ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) |
Ref | Expression |
---|---|
bnj969 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | |
2 | bnj667 30076 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
3 | bnj969.3 | . . . . . . 7 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj969.14 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 280 | . . . . . 6 ⊢ (𝜒 → 𝜏) |
6 | 5 | 3ad2ant1 1075 | . . . . 5 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝜏) |
7 | 6 | adantl 481 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜏) |
8 | 3 | bnj1232 30128 | . . . . . . 7 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
9 | vex 3176 | . . . . . . . 8 ⊢ 𝑚 ∈ V | |
10 | 9 | bnj216 30054 | . . . . . . 7 ⊢ (𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛) |
11 | id 22 | . . . . . . 7 ⊢ (𝑝 = suc 𝑛 → 𝑝 = suc 𝑛) | |
12 | 8, 10, 11 | 3anim123i 1240 | . . . . . 6 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → (𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛)) |
13 | bnj969.15 | . . . . . . 7 ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) | |
14 | 3ancomb 1040 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛) ↔ (𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛)) | |
15 | 13, 14 | bitri 263 | . . . . . 6 ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛)) |
16 | 12, 15 | sylibr 223 | . . . . 5 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝜎) |
17 | 16 | adantl 481 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜎) |
18 | 1, 7, 17 | jca32 556 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜏 ∧ 𝜎))) |
19 | bnj256 30025 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜏 ∧ 𝜎))) | |
20 | 18, 19 | sylibr 223 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎)) |
21 | bnj969.12 | . . 3 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
22 | bnj969.10 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
23 | bnj969.1 | . . . 4 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
24 | bnj969.2 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
25 | 22, 4, 13, 23, 24 | bnj938 30261 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) ∈ V) |
26 | 21, 25 | syl5eqel 2692 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐶 ∈ V) |
27 | 20, 26 | syl 17 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ∖ cdif 3537 ∅c0 3874 {csn 4125 ∪ ciun 4455 suc csuc 5642 Fn wfn 5799 ‘cfv 5804 ωcom 6957 ∧ w-bnj17 30005 predc-bnj14 30007 FrSe w-bnj15 30011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-bnj17 30006 df-bnj14 30008 df-bnj13 30010 df-bnj15 30012 |
This theorem is referenced by: bnj910 30272 bnj1006 30283 |
Copyright terms: Public domain | W3C validator |