Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj256 Structured version   Visualization version   GIF version

Theorem bnj256 30025
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj256 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))

Proof of Theorem bnj256
StepHypRef Expression
1 bnj248 30019 . 2 ((𝜑𝜓𝜒𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))
2 anass 679 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))
31, 2bitri 263 1 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓) ∧ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w-bnj17 30005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-bnj17 30006
This theorem is referenced by:  bnj257  30026  bnj432  30035  bnj543  30217  bnj546  30220  bnj557  30225  bnj916  30257  bnj969  30270  bnj1090  30301  bnj1118  30306  bnj1174  30325
  Copyright terms: Public domain W3C validator