Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1118 Structured version   Visualization version   GIF version

Theorem bnj1118 30306
 Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1118.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1118.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1118.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1118.7 𝐷 = (ω ∖ {∅})
bnj1118.18 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
bnj1118.19 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
bnj1118.26 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Assertion
Ref Expression
bnj1118 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Distinct variable groups:   𝐴,𝑖,𝑗,𝑦   𝑦,𝐵   𝐷,𝑗   𝑅,𝑖,𝑗,𝑦   𝑓,𝑖,𝑗,𝑦   𝑖,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜏(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜎(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑓,𝑛)   𝐵(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑖,𝑛)   𝑅(𝑓,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑗,𝑛)   𝑋(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜑0(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1118
StepHypRef Expression
1 bnj1118.3 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1118.7 . . . 4 𝐷 = (ω ∖ {∅})
3 bnj1118.18 . . . 4 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
4 bnj1118.19 . . . 4 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
5 bnj1118.26 . . . 4 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
61, 2, 3, 4, 5bnj1110 30304 . . 3 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
7 ancl 567 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))))
86, 7bnj101 30043 . 2 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)))
9 simpr2 1061 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑖 = suc 𝑗)
101bnj1254 30134 . . . . . . 7 (𝜒𝜓)
11103ad2ant3 1077 . . . . . 6 ((𝜃𝜏𝜒) → 𝜓)
1211ad2antrl 760 . . . . 5 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜓)
1312adantr 480 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝜓)
141bnj1232 30128 . . . . . . . . 9 (𝜒𝑛𝐷)
15143ad2ant3 1077 . . . . . . . 8 ((𝜃𝜏𝜒) → 𝑛𝐷)
1615ad2antrl 760 . . . . . . 7 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝑛𝐷)
1716adantr 480 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑛𝐷)
18 simpr1 1060 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑗𝑛)
192bnj923 30092 . . . . . . . 8 (𝑛𝐷𝑛 ∈ ω)
2019anim1i 590 . . . . . . 7 ((𝑛𝐷𝑗𝑛) → (𝑛 ∈ ω ∧ 𝑗𝑛))
2120ancomd 466 . . . . . 6 ((𝑛𝐷𝑗𝑛) → (𝑗𝑛𝑛 ∈ ω))
2217, 18, 21syl2anc 691 . . . . 5 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑗𝑛𝑛 ∈ ω))
23 elnn 6967 . . . . 5 ((𝑗𝑛𝑛 ∈ ω) → 𝑗 ∈ ω)
2422, 23syl 17 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑗 ∈ ω)
254bnj1232 30128 . . . . . 6 (𝜑0𝑖𝑛)
2625adantl 481 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → 𝑖𝑛)
2726ad2antlr 759 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑖𝑛)
289, 13, 24, 27bnj951 30100 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛))
29 bnj1118.5 . . . . . . 7 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
3029simp2bi 1070 . . . . . 6 (𝜏 → TrFo(𝐵, 𝐴, 𝑅))
31303ad2ant2 1076 . . . . 5 ((𝜃𝜏𝜒) → TrFo(𝐵, 𝐴, 𝑅))
3231ad2antrl 760 . . . 4 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → TrFo(𝐵, 𝐴, 𝑅))
33 simp3 1056 . . . 4 ((𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵) → (𝑓𝑗) ⊆ 𝐵)
3432, 33anim12i 588 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵))
35 bnj256 30025 . . . . 5 ((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) ↔ ((𝑖 = suc 𝑗𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖𝑛)))
36 bnj1118.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3736bnj1112 30305 . . . . . . . . 9 (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
3837biimpi 205 . . . . . . . 8 (𝜓 → ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
393819.21bi 2047 . . . . . . 7 (𝜓 → ((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
40 eleq1 2676 . . . . . . . . 9 (𝑖 = suc 𝑗 → (𝑖𝑛 ↔ suc 𝑗𝑛))
4140anbi2d 736 . . . . . . . 8 (𝑖 = suc 𝑗 → ((𝑗 ∈ ω ∧ 𝑖𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗𝑛)))
42 fveq2 6103 . . . . . . . . 9 (𝑖 = suc 𝑗 → (𝑓𝑖) = (𝑓‘suc 𝑗))
4342eqeq1d 2612 . . . . . . . 8 (𝑖 = suc 𝑗 → ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
4441, 43imbi12d 333 . . . . . . 7 (𝑖 = suc 𝑗 → (((𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4539, 44syl5ibr 235 . . . . . 6 (𝑖 = suc 𝑗 → (𝜓 → ((𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4645imp31 447 . . . . 5 (((𝑖 = suc 𝑗𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖𝑛)) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
4735, 46sylbi 206 . . . 4 ((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
48 df-bnj19 30016 . . . . . . 7 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑦𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
49 ssralv 3629 . . . . . . 7 ((𝑓𝑗) ⊆ 𝐵 → (∀𝑦𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5048, 49syl5bi 231 . . . . . 6 ((𝑓𝑗) ⊆ 𝐵 → ( TrFo(𝐵, 𝐴, 𝑅) → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5150impcom 445 . . . . 5 (( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵) → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
52 iunss 4497 . . . . 5 ( 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 ↔ ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
5351, 52sylibr 223 . . . 4 (( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵) → 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
54 sseq1 3589 . . . . 5 ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) → ((𝑓𝑖) ⊆ 𝐵 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5554biimpar 501 . . . 4 (((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ∧ 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
5647, 53, 55syl2an 493 . . 3 (((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) ∧ ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑓𝑖) ⊆ 𝐵)
5728, 34, 56syl2anc 691 . 2 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑓𝑖) ⊆ 𝐵)
588, 57bnj1023 30105 1 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  {csn 4125  ∪ ciun 4455   class class class wbr 4583   E cep 4947  dom cdm 5038  suc csuc 5642   Fn wfn 5799  ‘cfv 5804  ωcom 6957   ∧ w-bnj17 30005   predc-bnj14 30007   TrFow-bnj19 30015 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fn 5807  df-fv 5812  df-om 6958  df-bnj17 30006  df-bnj19 30016 This theorem is referenced by:  bnj1030  30309
 Copyright terms: Public domain W3C validator