Proof of Theorem bnj1118
Step | Hyp | Ref
| Expression |
1 | | bnj1118.3 |
. . . 4
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
2 | | bnj1118.7 |
. . . 4
⊢ 𝐷 = (ω ∖
{∅}) |
3 | | bnj1118.18 |
. . . 4
⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) |
4 | | bnj1118.19 |
. . . 4
⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) |
5 | | bnj1118.26 |
. . . 4
⊢ (𝜂′ ↔ ((𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓) → (𝑓‘𝑗) ⊆ 𝐵)) |
6 | 1, 2, 3, 4, 5 | bnj1110 30304 |
. . 3
⊢
∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) |
7 | | ancl 567 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)))) |
8 | 6, 7 | bnj101 30043 |
. 2
⊢
∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵))) |
9 | | simpr2 1061 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑖 = suc 𝑗) |
10 | 1 | bnj1254 30134 |
. . . . . . 7
⊢ (𝜒 → 𝜓) |
11 | 10 | 3ad2ant3 1077 |
. . . . . 6
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → 𝜓) |
12 | 11 | ad2antrl 760 |
. . . . 5
⊢ ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → 𝜓) |
13 | 12 | adantr 480 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝜓) |
14 | 1 | bnj1232 30128 |
. . . . . . . . 9
⊢ (𝜒 → 𝑛 ∈ 𝐷) |
15 | 14 | 3ad2ant3 1077 |
. . . . . . . 8
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → 𝑛 ∈ 𝐷) |
16 | 15 | ad2antrl 760 |
. . . . . . 7
⊢ ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → 𝑛 ∈ 𝐷) |
17 | 16 | adantr 480 |
. . . . . 6
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑛 ∈ 𝐷) |
18 | | simpr1 1060 |
. . . . . 6
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑗 ∈ 𝑛) |
19 | 2 | bnj923 30092 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
20 | 19 | anim1i 590 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑗 ∈ 𝑛) → (𝑛 ∈ ω ∧ 𝑗 ∈ 𝑛)) |
21 | 20 | ancomd 466 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑗 ∈ 𝑛) → (𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω)) |
22 | 17, 18, 21 | syl2anc 691 |
. . . . 5
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω)) |
23 | | elnn 6967 |
. . . . 5
⊢ ((𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑗 ∈ ω) |
24 | 22, 23 | syl 17 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑗 ∈ ω) |
25 | 4 | bnj1232 30128 |
. . . . . 6
⊢ (𝜑0 → 𝑖 ∈ 𝑛) |
26 | 25 | adantl 481 |
. . . . 5
⊢ (((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → 𝑖 ∈ 𝑛) |
27 | 26 | ad2antlr 759 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → 𝑖 ∈ 𝑛) |
28 | 9, 13, 24, 27 | bnj951 30100 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛)) |
29 | | bnj1118.5 |
. . . . . . 7
⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
30 | 29 | simp2bi 1070 |
. . . . . 6
⊢ (𝜏 → TrFo(𝐵, 𝐴, 𝑅)) |
31 | 30 | 3ad2ant2 1076 |
. . . . 5
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → TrFo(𝐵, 𝐴, 𝑅)) |
32 | 31 | ad2antrl 760 |
. . . 4
⊢ ((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → TrFo(𝐵, 𝐴, 𝑅)) |
33 | | simp3 1056 |
. . . 4
⊢ ((𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵) → (𝑓‘𝑗) ⊆ 𝐵) |
34 | 32, 33 | anim12i 588 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵)) |
35 | | bnj256 30025 |
. . . . 5
⊢ ((𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) ↔ ((𝑖 = suc 𝑗 ∧ 𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛))) |
36 | | bnj1118.2 |
. . . . . . . . . 10
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
37 | 36 | bnj1112 30305 |
. . . . . . . . 9
⊢ (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
38 | 37 | biimpi 205 |
. . . . . . . 8
⊢ (𝜓 → ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
39 | 38 | 19.21bi 2047 |
. . . . . . 7
⊢ (𝜓 → ((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
40 | | eleq1 2676 |
. . . . . . . . 9
⊢ (𝑖 = suc 𝑗 → (𝑖 ∈ 𝑛 ↔ suc 𝑗 ∈ 𝑛)) |
41 | 40 | anbi2d 736 |
. . . . . . . 8
⊢ (𝑖 = suc 𝑗 → ((𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛))) |
42 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑖 = suc 𝑗 → (𝑓‘𝑖) = (𝑓‘suc 𝑗)) |
43 | 42 | eqeq1d 2612 |
. . . . . . . 8
⊢ (𝑖 = suc 𝑗 → ((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
44 | 41, 43 | imbi12d 333 |
. . . . . . 7
⊢ (𝑖 = suc 𝑗 → (((𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛) → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
45 | 39, 44 | syl5ibr 235 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (𝜓 → ((𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
46 | 45 | imp31 447 |
. . . . 5
⊢ (((𝑖 = suc 𝑗 ∧ 𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛)) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
47 | 35, 46 | sylbi 206 |
. . . 4
⊢ ((𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
48 | | df-bnj19 30016 |
. . . . . . 7
⊢ (
TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑦 ∈ 𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
49 | | ssralv 3629 |
. . . . . . 7
⊢ ((𝑓‘𝑗) ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 → ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)) |
50 | 48, 49 | syl5bi 231 |
. . . . . 6
⊢ ((𝑓‘𝑗) ⊆ 𝐵 → ( TrFo(𝐵, 𝐴, 𝑅) → ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)) |
51 | 50 | impcom 445 |
. . . . 5
⊢ ((
TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵) → ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
52 | | iunss 4497 |
. . . . 5
⊢ (∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 ↔ ∀𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
53 | 51, 52 | sylibr 223 |
. . . 4
⊢ ((
TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵) → ∪
𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) |
54 | | sseq1 3589 |
. . . . 5
⊢ ((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) → ((𝑓‘𝑖) ⊆ 𝐵 ↔ ∪
𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)) |
55 | 54 | biimpar 501 |
. . . 4
⊢ (((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ∧ ∪
𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓‘𝑖) ⊆ 𝐵) |
56 | 47, 53, 55 | syl2an 493 |
. . 3
⊢ (((𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛) ∧ ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑓‘𝑖) ⊆ 𝐵) |
57 | 28, 34, 56 | syl2anc 691 |
. 2
⊢ (((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ (𝑓‘𝑗) ⊆ 𝐵)) → (𝑓‘𝑖) ⊆ 𝐵) |
58 | 8, 57 | bnj1023 30105 |
1
⊢
∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) |